Ordinary Differential Equations

m Eigenvalue problems.
m Shooting method.
m Numerov's method.
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Eigenvalue problems

m Special kind of boundary value problems where
equation(s) being solved are

m Linear
m Homogeneous
m Every term is linear in the dependent variable.

m A good example is the Schroédinger equation:

I () = Bo)

om da?

where the symbols have the usual meaning.
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Eigenvalue problems

m Consider the problem of a particle in a square potential
well of length L with infinitely high walls, i.e.

f L
V(x):{o or D<o <

00 elsewhere

3/12



Eigenvalue problems

m Consider the problem of a particle in a square potential
well of length L with infinitely high walls, i.e.

V(x) =

00 elsewhere

{O forO0<axz< L

m Ofcourse you all have solved this problem analytically!
But lets see how to do this on a computer!

3/12



Eigenvalue problems

m Consider the problem of a particle in a square potential
well of length L with infinitely high walls, i.e.

f L
V(x):{o or D<o <

00 elsewhere

m Ofcourse you all have solved this problem analytically!
But lets see how to do this on a computer!

m As the probability of finding the particle in the region with
V(z) = oo is zero, the wavefunction 1(x) has to go to
zeroatx =0and z = L.

3/12



Eigenvalue problems

m Consider the problem of a particle in a square potential
well of length L with infinitely high walls, i.e.

f L
V(x):{o or D<o <

00 elsewhere

m Ofcourse you all have solved this problem analytically!
But lets see how to do this on a computer!

m As the probability of finding the particle in the region with
V(z) = oo is zero, the wavefunction 1(x) has to go to
zeroatx =0and z = L.

m Standard boundary value problem, that we can solve with
the Shooting method!
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Shooting method

m As this is a second order differential equation, we would
start by turning it into 2 first order differential equations:

di_ o do_om

T=p D=V - B
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Shooting method

m As this is a second order differential equation, we would
start by turning it into 2 first order differential equations:

dip
Voo D) - B
m We know ¢(z = 0) = 0. We guess an initial value of ¢

and then calculate the solution fromz =0toz = L
(using for example 4th order Runge Kutta).

do  2m
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Shooting method

m We see that the solution does not go to 0 at z = L.
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Shooting method

m We see that the solution does not go to 0 at z = L.
m We can try to fix this by changing the initial condition on
¢ using a root finding method (such as binary search).

m If we just double the initial condition on ¢ we get the

dashed curve!
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Shooting method

m The initial condition only affects the overall magnitude of
the solution, but does not change the shape.
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Shooting method

m The initial condition only affects the overall magnitude of
the solution, but does not change the shape.

m This is because the equation is linear — if ¢)(x) is a
solution, ct)(x) is also a solution!

m Infact for an arbitrary choice of E, there is no solution
that satisfies the boundary conditions!

m The solutions exists only for some specific/allowed values
of I/ — eigenvalues.

6/12



Shooting method

m To find the allowed values of energy — we use the shooting
method but rather than changing the initial conditions, we
vary E.
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Shooting method

m To find the allowed values of energy — we use the shooting
method but rather than changing the initial conditions, we
vary E.

m For a particular set of initial conditions, we vary E to find
the value’ for which, ©» =0 at x = L.

m But that leaves the inititial condition, ¢ = dv/dx.

m Since changing this boundary condition, only changes the
solution by a simple multiplicative factor, it doesn't
matter what this is set to!!l!

m Usually the factor is fixed by normalization of the
wavefunction.
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Numerov's method

m The method presented in the previous slides is not the
only method for solving eigenvalue problems — there are
much more specialized methods as well.
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Numerov's method

m The method presented in the previous slides is not the
only method for solving eigenvalue problems — there are
much more specialized methods as well.

m Instead of solving two first order differential equations
solve the second order differential equation directly.

m Use the fact that this equation is linear in ¢ and there is
no term involving the first derivative.

m Let us rewrite the equation as:

where k? = 22(F — V()
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Numerov's method

Taylor expanding ©(x + h):

h? h3 ht
Wz + h) =P(z) + h' + EW) + Ezp(f‘) + ﬂw(‘*) ..
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Numerov's method

Taylor expanding ©(x + h):

h? h? b
V(o +h) = (@) + b + S + Ezp(f‘) + oW+

Adding the Taylor expansion of ¥(x — h):

4
W(x+ h) + vz — h) = 20(x) + h2® + ’f—2¢<4> + O ...

9/12



Numerov's method

Taylor expanding ©(x + h):
h? h3 h*
V(o +h) = (@) + b + S + Ezp(f‘) + oW+
Adding the Taylor expansion of ¥(x — h):
h4
W(x+ h) + vz — h) = 20(x) + h2® + EW + O ...

Rearranging terms we get:

(@ +h)+ (e —h) —2¢(@) K
h2 12

B = YW 4+ O(n%)
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Numerov's method

As we are interested in terms upto 4th derivative, applying

h? d?

1422
+ 12 dx?

to the Scrédinger's equation:
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Numerov's method

As we are interested in terms upto 4th derivative, applying

h? d?

1422
+ 12 dx?

to the Scrédinger's equation:

@ @ e W& _0
U+ T+ R (@)Y () + 5o R (@)Y ()] =

Substituting for 1)) + i‘—;%‘”:

Y(@+h)+(e—h) =20 (2)+0*k* ()9 (2)+ 75 - [k (@) (z)] = 0
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Numerov's method

Using a simple central differencing formula (O(h?)) as it is
already multiplied by h*:

LWy ~ K (x + h)i(a + h) + kQ(xh—z ) (z — ) — 2K%(x)(x
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dd_;[kQ(xW(x)] ~ k*(x + h)p(z 4+ h) + kQ(-”h_z h)y(x — h) — 2k (2)¢(x

Substituting and rearranging:

2(1 = SR%K* (@)Y (x) — (1 + 512k (z — h))Y(z — h)
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Ylath) =
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Numerov's method

Using a simple central differencing formula (O(h?)) as it is
already multiplied by h*:

dd_;[kQ(xW(x)] ~ k*(x + h)p(z 4+ h) + kQ(-”h_z h)y(x — h) — 2k (2)¢(x

Substituting and rearranging:

2(1 = SR%K* (@)Y (x) — (1 + 512k (z — h))Y(z — h)
1+ £h2klz + h)

Ylath) =

This method has error of O(h) per step.
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Numerov's method

m The overall error is not O(h®), but rather O(h?)
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this method can be used to solve the problem.
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Numerov's method

m The overall error is not O(h°), but rather O(h?)

m Given the first two points (value of ¢ at those points),
this method can be used to solve the problem.

m There maybe problems in the subtraction in the
numerator — so only use double/double precision.
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