
Ordinary Differential Equations

Eigenvalue problems.
Shooting method.
Numerov’s method.
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Eigenvalue problems

Special kind of boundary value problems where
equation(s) being solved are

Linear
Homogeneous
Every term is linear in the dependent variable.

A good example is the Schrödinger equation:

− ~2

2m

d2ψ

dx2
+ V (x)ψ(x) = Eψ(x)

where the symbols have the usual meaning.
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Eigenvalue problems

Consider the problem of a particle in a square potential
well of length L with infinitely high walls, i.e.

V (x) =

{
0 for 0 < x < L

∞ elsewhere

Ofcourse you all have solved this problem analytically!
But lets see how to do this on a computer!
As the probability of finding the particle in the region with
V (x) =∞ is zero, the wavefunction ψ(x) has to go to
zero at x = 0 and x = L.
Standard boundary value problem, that we can solve with
the Shooting method!
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Shooting method

As this is a second order differential equation, we would
start by turning it into 2 first order differential equations:

dψ

dx
= φ

dφ

dx
=

2m

~2
[V (x)− E]ψ

We know ψ(x = 0) = 0. We guess an initial value of φ
and then calculate the solution from x = 0 to x = L
(using for example 4th order Runge Kutta).
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Shooting method

We see that the solution does not go to 0 at x = L.

We can try to fix this by changing the initial condition on
φ using a root finding method (such as binary search).
This will not work!!!!!
If we just double the initial condition on φ we get the
dashed curve!
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Shooting method

The initial condition only affects the overall magnitude of
the solution, but does not change the shape.

This is because the equation is linear – if ψ(x) is a
solution, cψ(x) is also a solution!
Infact for an arbitrary choice of E, there is no solution
that satisfies the boundary conditions!
The solutions exists only for some specific/allowed values
of E – eigenvalues.
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Shooting method

To find the allowed values of energy – we use the shooting
method but rather than changing the initial conditions, we
vary E.

For a particular set of initial conditions, we vary E to find
the value’ for which, ψ = 0 at x = L.
But that leaves the inititial condition, φ = dψ/dx.
Since changing this boundary condition, only changes the
solution by a simple multiplicative factor, it doesn’t
matter what this is set to!!!!
Usually the factor is fixed by normalization of the
wavefunction.
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Numerov’s method

The method presented in the previous slides is not the
only method for solving eigenvalue problems – there are
much more specialized methods as well.

Instead of solving two first order differential equations
solve the second order differential equation directly.
Use the fact that this equation is linear in ψ and there is
no term involving the first derivative.
Let us rewrite the equation as:

d2ψ

dx2
+ k2(x)ψ(x) = 0

where k2 = 2m
~2 (E − V (x))
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Numerov’s method

Taylor expanding ψ(x+ h):

ψ(x+ h) = ψ(x) + hψ′ +
h2

2
ψ(2) +

h3

6
ψ(3) +

h4

24
ψ(4) + . . .

Adding the Taylor expansion of ψ(x− h):

ψ(x+ h) + ψ(x− h) = 2ψ(x) + h2ψ(2) +
h4

12
ψ(4) +O(h6) . . .

Rearranging terms we get:

ψ(2) =
ψ(x+ h) + ψ(x− h)− 2ψ(x)

h2
− h2

12
ψ(4) +O(h6)
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Numerov’s method

As we are interested in terms upto 4th derivative, applying

1 +
h2

12

d2

dx2

to the Scrödinger’s equation:

ψ(2) +
h2

12
ψ(4) + k2(x)ψ(x) +

h2

12

d2

dx2
[k2(x)ψ(x)] = 0

Substituting for ψ(2) + h2

12
ψ(4):

ψ(x+h)+ψ(x−h)−2ψ(x)+h2k2(x)ψ(x)+h
4

12

d2

dx2
[k2(x)ψ(x)] = 0
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Numerov’s method

Using a simple central differencing formula (O(h2)) as it is
already multiplied by h4:

d2

dx2
[k2(x)ψ(x)] ≈ k2(x+ h)ψ(x+ h) + k2(x− h)ψ(x− h)− 2k2(x)ψ(x)

h2

Substituting and rearranging:

ψ(x+h) =
2(1− 5

12
h2k2(x))ψ(x)− (1 + 1

12
h2k2(x− h))ψ(x− h)

1 + 1
12
h2k(x+ h)

This method has error of O(h6) per step.
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Numerov’s method

The overall error is not O(h5), but rather O(h4)

Given the first two points (value of ψ at those points),
this method can be used to solve the problem.
There maybe problems in the subtraction in the
numerator – so only use double/double precision.
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