

- Eigenvalue problems.
- Shooting method.
- Numerov's method.

- Special kind of boundary value problems where equation(s) being solved are

- Special kind of boundary value problems where equation(s) being solved are
 - Linear

- Special kind of boundary value problems where equation(s) being solved are
 - Linear
 - Homogeneous

- Special kind of boundary value problems where equation(s) being solved are
 - Linear
 - Homogeneous
 - Every term is linear in the dependent variable.

- Special kind of boundary value problems where equation(s) being solved are
 - Linear
 - Homogeneous
 - Every term is linear in the dependent variable.
- A good example is the Schrödinger equation:

$$-\frac{\hbar^2}{2m} \frac{d^2\psi}{dx^2} + V(x)\psi(x) = E\psi(x)$$

where the symbols have the usual meaning.

- Consider the problem of a particle in a square potential well of length L with infinitely high walls, i.e.

$$V(x) = \begin{cases} 0 & \text{for } 0 < x < L \\ \infty & \text{elsewhere} \end{cases}$$

- Consider the problem of a particle in a square potential well of length L with infinitely high walls, i.e.

$$V(x) = \begin{cases} 0 & \text{for } 0 < x < L \\ \infty & \text{elsewhere} \end{cases}$$

- Ofcourse you all have solved this problem analytically!
But lets see how to do this on a computer!

- Consider the problem of a particle in a square potential well of length L with infinitely high walls, i.e.

$$V(x) = \begin{cases} 0 & \text{for } 0 < x < L \\ \infty & \text{elsewhere} \end{cases}$$

- Ofcourse you all have solved this problem analytically!
But lets see how to do this on a computer!
- As the probability of finding the particle in the region with $V(x) = \infty$ is zero, the wavefunction $\psi(x)$ has to go to zero at $x = 0$ and $x = L$.

- Consider the problem of a particle in a square potential well of length L with infinitely high walls, i.e.

$$V(x) = \begin{cases} 0 & \text{for } 0 < x < L \\ \infty & \text{elsewhere} \end{cases}$$

- Ofcourse you all have solved this problem analytically!
But lets see how to do this on a computer!
- As the probability of finding the particle in the region with $V(x) = \infty$ is zero, the wavefunction $\psi(x)$ has to go to zero at $x = 0$ and $x = L$.
- Standard boundary value problem, that we can solve with the Shooting method!

Shooting method

- As this is a second order differential equation, we would start by turning it into 2 first order differential equations:

$$\frac{d\psi}{dx} = \phi \quad \frac{d\phi}{dx} = \frac{2m}{\hbar^2} [V(x) - E]\psi$$

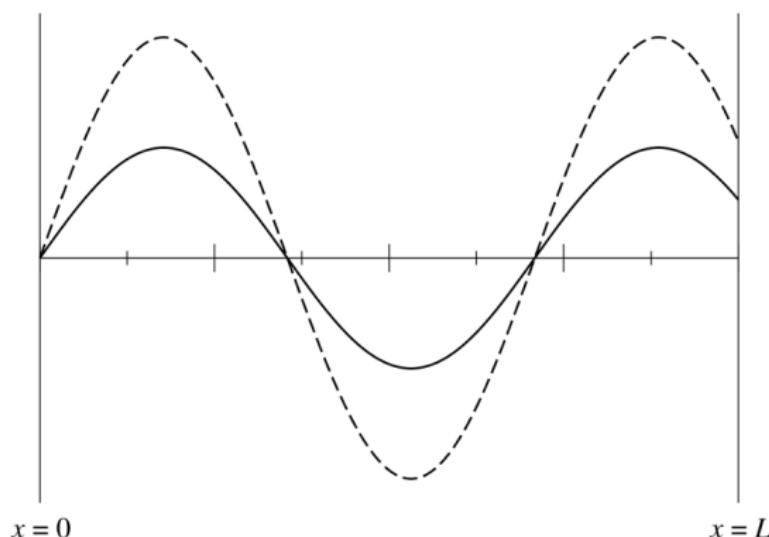
- As this is a second order differential equation, we would start by turning it into 2 first order differential equations:

$$\frac{d\psi}{dx} = \phi \quad \frac{d\phi}{dx} = \frac{2m}{\hbar^2} [V(x) - E]\psi$$

- We know $\psi(x = 0) = 0$. We guess an initial value of ϕ and then calculate the solution from $x = 0$ to $x = L$ (using for example 4th order Runge Kutta).

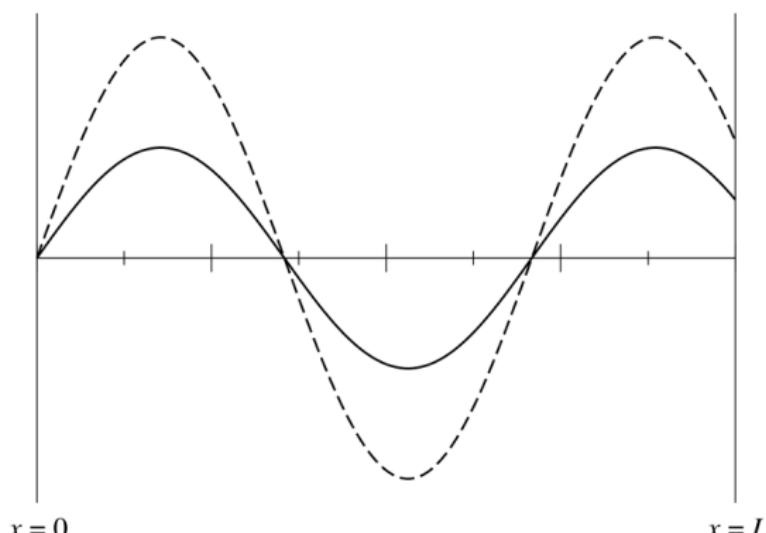
Shooting method

- We see that the solution does not go to 0 at $x = L$.



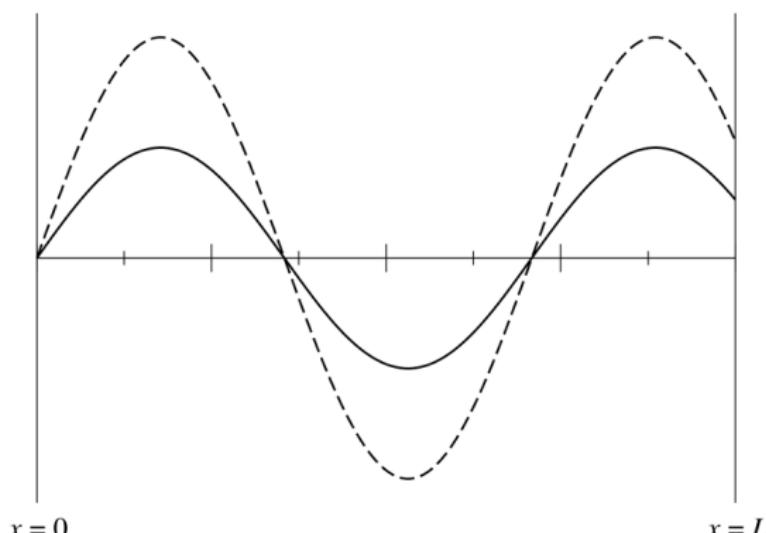
Shooting method

- We see that the solution does not go to 0 at $x = L$.
- We can try to fix this by changing the initial condition on ϕ using a root finding method (such as binary search).



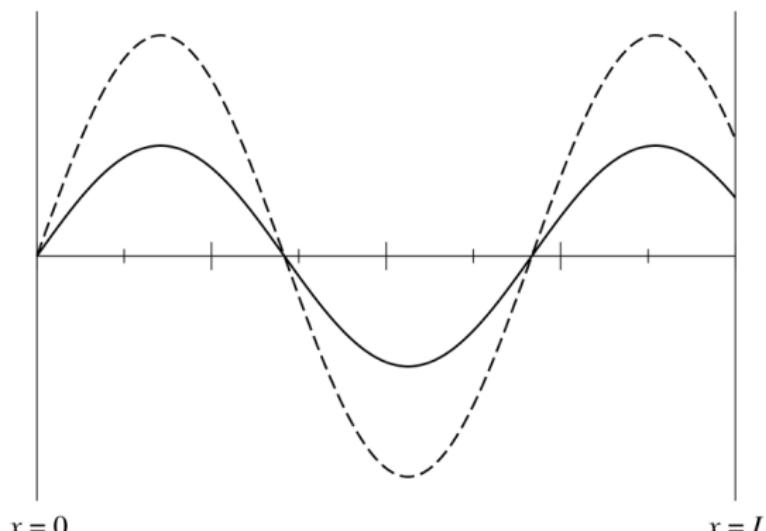
Shooting method

- We see that the solution does not go to 0 at $x = L$.
- We can try to fix this by changing the initial condition on ϕ using a root finding method (such as binary search).
- This will not work!!!!



Shooting method

- We see that the solution does not go to 0 at $x = L$.
- We can try to fix this by changing the initial condition on ϕ using a root finding method (such as binary search).
- This will not work!!!!
- If we just double the initial condition on ϕ we get the dashed curve!



Shooting method

- The initial condition only affects the overall magnitude of the solution, but does not change the shape.

- The initial condition only affects the overall magnitude of the solution, but does not change the shape.
- This is because the equation is linear – if $\psi(x)$ is a solution, $c\psi(x)$ is also a solution!

- The initial condition only affects the overall magnitude of the solution, but does not change the shape.
- This is because the equation is linear – if $\psi(x)$ is a solution, $c\psi(x)$ is also a solution!
- Infact for an arbitrary choice of E , there is no solution that satisfies the boundary conditions!

- The initial condition only affects the overall magnitude of the solution, but does not change the shape.
- This is because the equation is linear – if $\psi(x)$ is a solution, $c\psi(x)$ is also a solution!
- Infact for an arbitrary choice of E , there is no solution that satisfies the boundary conditions!
- The solutions exists only for some specific/allowed values of E – eigenvalues.

Shooting method

- To find the allowed values of energy – we use the shooting method but rather than changing the initial conditions, we vary E .

Shooting method

- To find the allowed values of energy – we use the shooting method but rather than changing the initial conditions, we vary E .
- For a particular set of initial conditions, we vary E to find the value' for which, $\psi = 0$ at $x = L$.

Shooting method

- To find the allowed values of energy – we use the shooting method but rather than changing the initial conditions, we vary E .
- For a particular set of initial conditions, we vary E to find the value' for which, $\psi = 0$ at $x = L$.
- But that leaves the inititial condition, $\phi = d\psi/dx$.

- To find the allowed values of energy – we use the shooting method but rather than changing the initial conditions, we vary E .
- For a particular set of initial conditions, we vary E to find the value' for which, $\psi = 0$ at $x = L$.
- But that leaves the inititial condition, $\phi = d\psi/dx$.
- Since changing this boundary condition, only changes the solution by a simple multiplicative factor, it doesn't matter what this is set to!!!!

Shooting method

- To find the allowed values of energy – we use the shooting method but rather than changing the initial conditions, we vary E .
- For a particular set of initial conditions, we vary E to find the value' for which, $\psi = 0$ at $x = L$.
- But that leaves the inititial condition, $\phi = d\psi/dx$.
- Since changing this boundary condition, only changes the solution by a simple multiplicative factor, it doesn't matter what this is set to!!!!
- Usually the factor is fixed by normalization of the wavefunction.

- The method presented in the previous slides is not the only method for solving eigenvalue problems – there are much more specialized methods as well.

- The method presented in the previous slides is not the only method for solving eigenvalue problems – there are much more specialized methods as well.
- Instead of solving two first order differential equations solve the second order differential equation directly.

- The method presented in the previous slides is not the only method for solving eigenvalue problems – there are much more specialized methods as well.
- Instead of solving two first order differential equations solve the second order differential equation directly.
- Use the fact that this equation is linear in ψ and there is no term involving the first derivative.

- The method presented in the previous slides is not the only method for solving eigenvalue problems – there are much more specialized methods as well.
- Instead of solving two first order differential equations solve the second order differential equation directly.
- Use the fact that this equation is linear in ψ and there is no term involving the first derivative.
- Let us rewrite the equation as:

$$\frac{d^2\psi}{dx^2} + k^2(x)\psi(x) = 0$$

where $k^2 = \frac{2m}{\hbar^2}(E - V(x))$

Taylor expanding $\psi(x + h)$:

$$\psi(x + h) = \psi(x) + h\psi' + \frac{h^2}{2}\psi^{(2)} + \frac{h^3}{6}\psi^{(3)} + \frac{h^4}{24}\psi^{(4)} + \dots$$

Taylor expanding $\psi(x + h)$:

$$\psi(x + h) = \psi(x) + h\psi' + \frac{h^2}{2}\psi^{(2)} + \frac{h^3}{6}\psi^{(3)} + \frac{h^4}{24}\psi^{(4)} + \dots$$

Adding the Taylor expansion of $\psi(x - h)$:

$$\psi(x + h) + \psi(x - h) = 2\psi(x) + h^2\psi^{(2)} + \frac{h^4}{12}\psi^{(4)} + \mathcal{O}(h^6) \dots$$

Taylor expanding $\psi(x + h)$:

$$\psi(x + h) = \psi(x) + h\psi' + \frac{h^2}{2}\psi^{(2)} + \frac{h^3}{6}\psi^{(3)} + \frac{h^4}{24}\psi^{(4)} + \dots$$

Adding the Taylor expansion of $\psi(x - h)$:

$$\psi(x + h) + \psi(x - h) = 2\psi(x) + h^2\psi^{(2)} + \frac{h^4}{12}\psi^{(4)} + \mathcal{O}(h^6) \dots$$

Rearranging terms we get:

$$\psi^{(2)} = \frac{\psi(x + h) + \psi(x - h) - 2\psi(x)}{h^2} - \frac{h^2}{12}\psi^{(4)} + \mathcal{O}(h^6)$$

As we are interested in terms upto 4th derivative, applying

$$1 + \frac{h^2}{12} \frac{d^2}{dx^2}$$

to the Schrödinger's equation:

As we are interested in terms upto 4th derivative, applying

$$1 + \frac{h^2}{12} \frac{d^2}{dx^2}$$

to the Schrödinger's equation:

$$\psi^{(2)} + \frac{h^2}{12} \psi^{(4)} + k^2(x) \psi(x) + \frac{h^2}{12} \frac{d^2}{dx^2} [k^2(x) \psi(x)] = 0$$

As we are interested in terms upto 4th derivative, applying

$$1 + \frac{h^2}{12} \frac{d^2}{dx^2}$$

to the Schrödinger's equation:

$$\psi^{(2)} + \frac{h^2}{12} \psi^{(4)} + k^2(x) \psi(x) + \frac{h^2}{12} \frac{d^2}{dx^2} [k^2(x) \psi(x)] = 0$$

Substituting for $\psi^{(2)} + \frac{h^2}{12} \psi^{(4)}$:

$$\psi(x+h) + \psi(x-h) - 2\psi(x) + h^2 k^2(x) \psi(x) + \frac{h^4}{12} \frac{d^2}{dx^2} [k^2(x) \psi(x)] = 0$$

Using a simple central differencing formula ($\mathcal{O}(h^2)$) as it is already multiplied by h^4 :

$$\frac{d^2}{dx^2}[k^2(x)\psi(x)] \approx \frac{k^2(x+h)\psi(x+h) + k^2(x-h)\psi(x-h) - 2k^2(x)\psi(x)}{h^2}$$

Using a simple central differencing formula ($\mathcal{O}(h^2)$) as it is already multiplied by h^4 :

$$\frac{d^2}{dx^2}[k^2(x)\psi(x)] \approx \frac{k^2(x+h)\psi(x+h) + k^2(x-h)\psi(x-h) - 2k^2(x)\psi(x)}{h^2}$$

Substituting and rearranging:

$$\psi(x+h) = \frac{2(1 - \frac{5}{12}h^2k^2(x))\psi(x) - (1 + \frac{1}{12}h^2k^2(x-h))\psi(x-h)}{1 + \frac{1}{12}h^2k^2(x+h)}$$

Using a simple central differencing formula ($\mathcal{O}(h^2)$) as it is already multiplied by h^4 :

$$\frac{d^2}{dx^2}[k^2(x)\psi(x)] \approx \frac{k^2(x+h)\psi(x+h) + k^2(x-h)\psi(x-h) - 2k^2(x)\psi(x)}{h^2}$$

Substituting and rearranging:

$$\psi(x+h) = \frac{2(1 - \frac{5}{12}h^2k^2(x))\psi(x) - (1 + \frac{1}{12}h^2k^2(x-h))\psi(x-h)}{1 + \frac{1}{12}h^2k^2(x+h)}$$

This method has error of $\mathcal{O}(h^6)$ per step.

- The overall error is not $\mathcal{O}(h^5)$, but rather $\mathcal{O}(h^4)$

- The overall error is not $\mathcal{O}(h^5)$, but rather $\mathcal{O}(h^4)$
- Given the first two points (value of ψ at those points), this method can be used to solve the problem.

- The overall error is not $\mathcal{O}(h^5)$, but rather $\mathcal{O}(h^4)$
- Given the first two points (value of ψ at those points), this method can be used to solve the problem.
- There maybe problems in the subtraction in the numerator – so only use double/double precision.