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Logistics

Homework 1 has been posted – Due date 20th Jan.
https://iiscphy354.github.io/computational-physics/
All homeworks have to submitted via github.
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Python Tutorial

Sanat has already given a python tutorial.
Project will be decided by you in consultation with your
Masters/PhD/Bachelors advisor – subject to our approval
as well.
Please send us a short paragraph about what you are
planning to do for the project.
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Machine representation, Precision and Errors

Representation on a computer.
Machine precision.
Errors.
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Machine Representation

Every computer has a limit how small/large a number can be.

A computer represents numbers in a binary form.
Word length: number of bytes used to store a number.
The number of bits processed by a computer’s CPU in
one go.
Most common architecture:
Word length = 4 bytes = 32 bits.
Word length = 8 bytes = 64 bits.
( 1 byte = 1 B = 8 bits: 00000000)
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Integer Representation

Integers are represented exactly on a computer.

Range usually depends only on the machine!
Python is an exception – can represent arbritrarily large
integers – show 210000

For most other languages – dependent on the size of the
integers:
integer*4 : 32 bits – highest number should be 232 - 1
But first bit is reserved for sign:
-231 – 231-1
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Floating point representation – single precision

For eg. 123.45e6 = 0.12345e9
sign: +, exponent: +9, mantissa: 12345

Sign

1bit

Exponent

8 bits

Mantissa

23 bits

Range of exponent: [-127, 127] (2127 ∼ 10+38)
Single precision: 6-7 decimal places (1/223 ∼ 10−7)
Range max: ±3.4× 1038.
Range min: ±1.4× 10−45.
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Example

Getting a problem with single precision is quite easy:

Example: Bohr’s radius:

a0 =
4πε0~2

mee2

where

ε0 = 8.85× 10−12C2/N/m2

~ = 6.63× 10−34/2πJ s

me = 9.11× 10−31Kg

e = 1.60× 10−19C

Numerator is: 1.24× 10−78 and Denominator is: 2.33× 10−68.
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What can one do?

Restructure the equation.

Change units – work in atomic units where all these
quantites are O(1).
Increase precision!
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Floating point representation – double precision

Sign

1bit

Exponent

11 bits

Mantissa

52 bits

Range of exponent: [-1023, 1023] (21023 ∼ 10+308)
Single precision: 15-16 decimal places
(1/252 ∼ 1.2× 10−15)
Range max: ±1.78× 10308.
Range min: ±4.94× 10−324.
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Floating point representation – double precision

Overflow Overflow

−10308 10308

Underflow

−10−324 10−324

0
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Machine Precision

Machine precision is the smallest number ε such that the difference
between 1 and 1 + ε is nonzero, ie., it is the smallest difference between

two numbers that the computer recognizes.

def machineEpsilon(func=float ):
machine_epsilon = func (1)
while func (1)+ func(machine_epsilon) != func (1):

machine_epsilon_last = machine_epsilon
machine_epsilon = func(machine_epsilon )/func (2)

return machine_epsilon_last
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Machine precision

>>> machineEpsilon(float)
2.220446049250313e-16
>>> import numpy as np
>>> machineEpsilon(np.float32)
1.1920929e-07
>>> machineEpsilon(np.float64)
2.2204460492503131e-16
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Three types of Errors

Grammatical
Using what is NOT in the programming language – the
compiler finds these.

Run time errors
(n-1) errors; Inversion of logical tests etc. – we have to
find them
Mirabile visu (strange to behold)
They show up only for some input parameters. The code
works for the test cases but blows up for some values of
parameters!
Reason: Loss of significant digits (round off errors),
unstable algorithms etc.
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Typical Errors

Round off errors: Any number is represented by a finite
number of bits.
The difference between the true value of the number and
its value on the computer is called round off error.
Approximation errors/ Truncation errors: From using
approximations such as replacing∫ ∞

0

f(x)dx with
∫ L

0

f(x)dx with finite L
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Round off Errors

Loss of significant digits

x = 1000000000000000.0

y = 1000000000000001.234567

Calculating y − x = 1.234567 but the computer calculates
this as y − x = 1.25 – instead of 16 figures we only have
2 figures!

Loss of precision
Erosion by repeated rounding errors (least significant
digits being eroded first).
The average accumulated mulipication error after N
multiplications is

√
Nε0.

Some times the problem is not round-off errors but
numerical stability of the algorithm. Even tiny round-off
errors grow rapidly if algorithm is not numerically stable.
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Loss of significant digits

Loss of significant digits occurs in so many ways that it defies
useful classification and lack systematic cures!
from math import sqrt
x = 1.0
y = 1.0 + (1e-14)* sqrt (2)
print (1e14 )*(y-x)
print sqrt (2)

1.42108547152
1.41421356237

Calculation is accurate only to first decimal place – rest is garbage!
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Numerical instability

Calculate the series an = φn n = 0, 1, 2 . . .
where φ is the golden ratio:

φ =

√
5− 1

2

Method 1: a0 = 1 and an = an−1φ

Method 2: a0 = 1 a1 = φ and an = an−2 − an−1
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Numerical instability

Method 1 is stable – while method 2 is not!
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Approximation/Truncation errors

Dealing with infinity – sometimes change of variables can
help (if it does not introduce any singularities).
Other times "tails" can be evaluated analytically:∫ ∞

0

√
x

x2 + 1
=

∫ L

0

√
x

x2 + 1
+

∫ ∞
L

√
x

x2 + 1

for L >> 1 : ∫ ∞
L

√
x

x2 + 1
≈

∫ ∞
L

1

x
3
2

=
2√
L

When a continuous problem is discretized – Use of Taylor
series expansion etc
Use of second order Taylor expansion vs first order can
control this error better.

20/21



Truncation vs Round-off error

Truncation error controlled by programmer; choose a
more accurate method!

Round off error is fixed (16 decimal places in DP); less
control
Typically truncation error » Round-off error; e.g.,
∆x = 10−3 then Truncation error for second order
expansion ∼ 10−6.
In general, order of accuracy not the sole metric for a
better algorithm – Stability, Robustness, Mathematical
properties are more crucial.
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