Computational Physics — PH 354

Manish Jain
Prateek Sharma

Email: mjain@iisc.ac.in
Email: prateek@iisc.ac.in

1/21

m Homework 1 has been posted — Due date 20th Jan.
m https://iiscphy354.github.io/computational-physics/
m All homeworks have to submitted via github.

2/21

Python Tutorial

m Sanat has already given a python tutorial.

m Project will be decided by you in consultation with your
Masters/PhD/Bachelors advisor — subject to our approval
as well.

m Please send us a short paragraph about what you are
planning to do for the project.

3/21

Machine representation, Precision and Errors

m Representation on a computer.
m Machine precision.
m Errors.

4/21

Machine Representation

Every computer has a limit how small/large a number can be.

5/21

Machine Representation

Every computer has a limit how small/large a number can be.

m A computer represents numbers in a binary form.

5/21

Machine Representation

Every computer has a limit how small/large a number can be.

m A computer represents numbers in a binary form.

m Word length: number of bytes used to store a number.
The number of bits processed by a computer’'s CPU in
one go.

5/21

Machine Representation

Every computer has a limit how small/large a number can be.

m A computer represents numbers in a binary form.

m Word length: number of bytes used to store a number.
The number of bits processed by a computer’'s CPU in
one go.

m Most common architecture:

Word length = 4 bytes = 32 bits.
Word length = 8 bytes = 64 bits.
(1 byte =1 B = 8 bits: 00000000)

5/21

Integer Representation

m Integers are represented exactly on a computer.

6/21

Integer Representation

m Integers are represented exactly on a computer.
m Range usually depends only on the machine!

6/21

Integer Representation

m Integers are represented exactly on a computer.
m Range usually depends only on the machine!

m Python is an exception — can represent arbritrarily large
integers — show 210000

6/21

Integer Representation

m Integers are represented exactly on a computer.

m Range usually depends only on the machine!

m Python is an exception — can represent arbritrarily large
integers — show 210000

m For most other languages — dependent on the size of the
integers:
integer*4 : 32 bits — highest number should be 232 - 1
But first bit is reserved for sign:
031 _ 931 7

6/21

Floating point representation — single precision

For eg. 123.45e6 = 0.12345€9
sign: +, exponent: +9, mantissa: 12345
Sign Exponent Mantissa

0 [CIITIITIT1] COIIIIITTITITIIIIITITI I IT]
1bit 8 bits 23 bits

7/21

Floating point representation — single precision

For eg. 123.45e6 = 0.12345€9
sign: +, exponent: +9, mantissa: 12345

Sign Exponent Mantissa
O [CIIOTTTTT] O TTITITITTITTI I I I T I]
1bit 8 bits 23 bits

m Range of exponent: [-127, 127] (2!%7 ~ 10"3%)

7/21

Floating point representation — single precision

For eg. 123.45e6 = 0.12345€9
sign: +, exponent: +9, mantissa: 12345

Sign Exponent Mantissa
O [CIIOTTTTT] O TTITITITTITTI I I I T I]
1bit 8 bits 23 bits

m Range of exponent: [-127, 127] (2!%7 ~ 10"3%)
m Single precision: 6-7 decimal places (1/2% ~ 1077)

7/21

Floating point representation — single precision

For eg. 123.45e6 = 0.12345€9
sign: +, exponent: +9, mantissa: 12345

Sign Exponent Mantissa
O [CIIOTTTTT] O TTITITITTITTI I I I T I]
1bit 8 bits 23 bits

m Range of exponent: [-127, 127] (2!%7 ~ 10"3%)

m Single precision: 6-7 decimal places (1/2% ~ 1077)
m Range max: 3.4 x 1038,

m Range min: £1.4 x 1074,

7/21

Getting a problem with single precision is quite easy:

Example: Bohr's radius:

Ameoh?
ag —

mee?

where

€0 = 8.85 x 10712C? /N /m*
h=6.63x107%/2n] s
me = 9.11 x 1073 Kg
e=1.60x 1071°C

Numerator is: 1.24 x 10~"® and Denominator is: 2.33 x 10798,

8/21

What can one do?

m Restructure the equation.

9/21

What can one do?

m Restructure the equation.

m Change units — work in atomic units where all these
quantites are O(1).

9/21

What can one do?

m Restructure the equation.

m Change units — work in atomic units where all these
quantites are O(1).

m Increase precision!

9/21

Floating point representation — double precision

Sign Exponent Mantissa
O CITTTTTTTT1] (EE|
1bit 11 bits 52 bits

10/21

Floating point representation — double precision

Sign Exponent Mantissa
O CITTTTTTTT1] (EE|
1bit 11 bits 52 bits

m Range of exponent: [-1023, 1023] (21923 ~ 10+308)

10/21

Floating point representation — double precision

Sign Exponent Mantissa
O CITTTTTTTT1] (EE|
1bit 11 bits 52 bits

m Range of exponent: [-1023, 1023] (21923 ~ 10+308)

m Single precision: 15-16 decimal places
(1/2%2 ~ 1.2 x 10719)

10/21

Floating point representation — double precision

Sign Exponent Mantissa
O CITTTTTTTT1] (EE|
1bit 11 bits 52 bits

m Range of exponent: [-1023, 1023] (21923 ~ 10+308)

m Single precision: 15-16 decimal places
(1/2%2 ~ 1.2 x 10719)

m Range max: £1.78 x 103%,
m Range min: £4.94 x 107324,

10/21

Floating point representation — double precision

Underflow

Overflow | | t | | Overflow

_ 10308 _ 10—324 107324 10308

11/21

Machine Precision

Machine precision is the smallest number € such that the difference
between 1 and 1 + € is nonzero, ie., it is the smallest difference between
two numbers that the computer recognizes.

def machineEpsilon(func=float):
machine_epsilon = func (1)
while func(1l)+func(machine_epsilon) != func(1):
machine_epsilon_last = machine_epsilon

machine_epsilon = func(machine_epsilon)/func(2)
return machine_epsilon_last

12/21

Machine precision

>>> machineEpsilon(float)
2.220446049250313e-16

>>> import numpy as np

>>> machineEpsilon(np.float32)
1.1920929e-07

>>> machineEpsilon(np.float64)
2.2204460492503131e-16

13/21

Three types of Errors

m Grammatical
Using what is NOT in the programming language — the
compiler finds these.

14/21

Three types of Errors

m Grammatical
Using what is NOT in the programming language — the
compiler finds these.

m Run time errors
(n-1) errors; Inversion of logical tests etc. — we have to
find them

14/21

Three types of Errors

m Grammatical
Using what is NOT in the programming language — the
compiler finds these.

m Run time errors
(n-1) errors; Inversion of logical tests etc. — we have to
find them

m Mirabile visu (strange to behold)
They show up only for some input parameters. The code
works for the test cases but blows up for some values of
parameters!
Reason: Loss of significant digits (round off errors),
unstable algorithms etc.

14/21

Typical Errors

m Round off errors: Any number is represented by a finite
number of bits.
The difference between the true value of the number and
its value on the computer is called round off error.

m Approximation errors/ Truncation errors: From using
approximations such as replacing

00 L
/ f(z)dz with / f(z)dz with finite L
0 0

15/21

Round off Errors

m Loss of significant digits

x = 1000000000000000.0
y = 1000000000000001.234567

Calculating y — = 1.234567 but the computer calculates
this as y — x = 1.25 — instead of 16 figures we only have
2 figures!

16/21

Round off Errors

m Loss of significant digits

x = 1000000000000000.0
y = 1000000000000001.234567

Calculating y — = 1.234567 but the computer calculates
this as y — x = 1.25 — instead of 16 figures we only have
2 figures!

m Loss of precision
Erosion by repeated rounding errors (least significant
digits being eroded first).
The average accumulated mulipication error after N
multiplications is v Neo.

16/21

Round off Errors

m Loss of significant digits

x = 1000000000000000.0
y = 1000000000000001.234567

Calculating y — = 1.234567 but the computer calculates
this as y — x = 1.25 — instead of 16 figures we only have
2 figures!

m Loss of precision
Erosion by repeated rounding errors (least significant
digits being eroded first).
The average accumulated mulipication error after N
multiplications is v Neo.

m Some times the problem is not round-off errors but
numerical stability of the algorithm. Even tiny round-off
errors grow rapidly if algorithm is not numerically stable.

16/21

Loss of significant digits

Loss of significant digits occurs in so many ways that it defies
useful classification and lack systematic cures!

from math import sqrt

x =1.0

y = 1.0 + (le-14)*sqrt(2)
print (leld)*(y-x)

print sqrt(2)

1.42108547152
1.41421356237

Calculation is accurate only to first decimal place — rest is garbage!

17/21

Numerical instability

Calculate the series a,, = ¢"n=0,1,2...
where ¢ is the golden ratio:

V5 —1
2

¢ =

m Method 1: ap =1 and a, = a,_1¢
m Method 2: ap=1a; =¢ and a, = a,_o — a,_1

18/21

Numerical instability

10°

107 “eg

102} L
107} .
1041 %
105} % °
10°} % °
107} % .

°, L)
108} '."o
109} %

L)

10710 L ..
101 L oy
1012t oy |

1013
0

10 20 30 40 50 60

Method 1 is stable — while method 2 is not!

19/21

Approximation/Truncation errors

m Dealing with infinity — sometimes change of variables can
help (if it does not introduce any singularities).
Other times "tails" can be evaluated analytically:

/ Vi [T Ve

x2+1 x2—1—1 241

for L >>1:

/°° Voo /°° 2

L w2+1), 23 VI

m When a continuous problem is discretized — Use of Taylor
series expansion etc

Use of second order Taylor expansion vs first order can
control this error better.

20/21

Truncation vs Round-off error

m Truncation error controlled by programmer; choose a
more accurate method!

21/21

Truncation vs Round-off error

m Truncation error controlled by programmer; choose a
more accurate method!

m Round off error is fixed (16 decimal places in DP); less
control

21/21

Truncation vs Round-off error

m Truncation error controlled by programmer; choose a
more accurate method!

m Round off error is fixed (16 decimal places in DP); less
control

m Typically truncation error » Round-off error; e.g.,
Az = 1073 then Truncation error for second order
expansion ~ 1076,

21/21

Truncation vs Round-off error

m Truncation error controlled by programmer; choose a
more accurate method!

m Round off error is fixed (16 decimal places in DP); less
control

m Typically truncation error » Round-off error; e.g.,
Ax = 1073 then Truncation error for second order
expansion ~ 1076,

m In general, order of accuracy not the sole metric for a
better algorithm — Stability, Robustness, Mathematical
properties are more crucial.

21/21

