
Ordinary Differential Equations

Boundary value problems.
Shooting method.
Equilibrium boundary value method/ Finite difference
method.
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Boundary value problems

Boundary-value problems – involve differential equations
with specified boundary conditions: example:
one-dimension second order ODE (where p and q are
some constants)

dy

dx2
+ p

dy

dx
+ q = f(x)

with y(x1) = y1 and y(x2) = y2.

The boundary-value problem is more difficult to solve than
the similar initial-value problem with the same differential
equation.
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Types of boundary conditions

There are three type of boundary conditions for
boundary-value problems.

The function y(x) is specified – Dirichlet boundary
conditions
The derivatives y′(x) is specified – Neumann boundary
conditions
A combination of y(x) and y′(x) is specified – mixed
boundary conditions
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Various ways of solving boundary value problems

The shooting method.

Finite difference method/equilibrium method.
. . ..
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The shooting method

The key idea of the shooting method is to transform the
boundary value ODE into a system of first-order ODEs
and solve as an initial value problem.

Only boundary condition on one side is used as one of the
initial conditions. The additional initial condition is
assumed.
Then an iterative approach is used to vary the assumed
initial condition till the boundary condition on the other
side is satisfied.

5/17



The shooting method

The key idea of the shooting method is to transform the
boundary value ODE into a system of first-order ODEs
and solve as an initial value problem.
Only boundary condition on one side is used as one of the
initial conditions. The additional initial condition is
assumed.

Then an iterative approach is used to vary the assumed
initial condition till the boundary condition on the other
side is satisfied.

5/17



The shooting method

The key idea of the shooting method is to transform the
boundary value ODE into a system of first-order ODEs
and solve as an initial value problem.
Only boundary condition on one side is used as one of the
initial conditions. The additional initial condition is
assumed.
Then an iterative approach is used to vary the assumed
initial condition till the boundary condition on the other
side is satisfied.

5/17



The shooting method

Assume we wish to solve a second order differential
equation with boundary condition:

y(x1) = y1 and y(x2) = y2

Let us consider an initial-value problem with

y(x1) = y1 and y′(x1) = c

where c is a parameter to be adjusted.
We use a root search algorithm to find c that insures

|y(x2)− y2| < tol

Quite often the fourth-order Runge-Kutta is combined
with the secant method.
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The shooting method

Suppose we have to solve the equation with boundary
conditions:

y(x1) = y1 and y(x2) = y2

Let us consider an initial-value problem with

y(x1) = y1 and y′(x1) = z1

with gives y(x2) = c1
Unless we are very lucky and |c1 − y2| < tol, we also get
starting with

y′(x1) = z2

leads to y(x2) = c2
Using secant method for root finding:

zk+1 = zk −
ck − y2
ck − ck−1

(zk − zk−1)
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The equilibrium boundary-value problem

Discretizing the continuous solution domain into a
discrete finite difference grid.

Approximating the exact derivatives in the boundary-value
ODE by algebraic finite difference approximations.
Substituting the FDAs into the ODE to obtain an
algebraic finite difference equation.
Solving the resulting system of algebraic FDEs (for linear
ODEs – a system of linear equations)
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The equilibrium boundary-value problem

Consider a second order, linear, variable coefficient,
boundary value problem with Drichlet boundary
conditions:

y′′(x) + P (x)y′(x) + Q(x)y(x) = F (x)

with y(x1) = y1 and y(xN) = yN

Discretizing the domain of x into N points x1, x2, . . . , xN

The second order centered difference approximation for y′

and y′′:

y′(xi) = y′i =
yi+1 − yi−1

2∆x
+O(∆x2)

y′′(xi) = y′′i =
yi+1 − 2yi + yi−1

∆x2
+O(∆x2)
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The equilibrium boundary-value problem

Substituting this into the differential equation and keeping
terms upto order O(∆x2):

yi+1 − 2yi + yi−1
∆x2

+ Pi

(
yi+1 − yi−1

2∆x
+

)
+ Qiyi = Fi

Multiplying by ∆x2 and rearranging:(
1−∆x

2
Pi

)
yi−1+(−2+∆x2Qi)yi+

(
1+

∆x

2
Pi

)
yi+1 = ∆x2Fi

Applying this to all the points on the grid yields a
tridiagonal system of equations.
Number of equations = N − 2 – can solve this easily with
a linear equation solver.
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Comment on higher order BVP

Example 4th oder problem:

y′′′′ = f(y′′′, y′′, y′, y, x)

and 4 boundary conditions.

For first/second derivative: i− 1, i, i + 1
For third/fourth derivative: i− 2, i− 1, i, i + 1, i + 2

Leads to a pentadiagonal system.
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Neumann boundary condition

Consider a second order, linear, variable coefficient,
boundary value problem with Neumann boundary
conditions:

y′′(x) + P (x)y′(x) + Q(x)y(x) = F (x)

with y(x1) = y1 and y′(xN) = y′N

The shooting method remains unchanged – except
shooting for a value of y′(xN) rather than y(xN).
The equilibrium method needs some modification:(

1−∆x

2
Pi

)
yi−1+(−2+∆x2Qi)yi+

(
1+

∆x

2
Pi

)
yi+1 = ∆x2Fi

remains the same at all the interior points.
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Neumann boundary condition

We also apply this equation to the boundary point:(
1− ∆x

2
PN

)
yN−1 + (−2 + ∆x2QN)yN+

(
1 +

∆x

2
PN

)
yN+1

= ∆x2FN

The point yN+1 is outside the domain but:

y′N =
yN+1 − yN−1

2∆x
yN+1 =yN−1 + 2∆xy′N

Substituting this in the equation for N point:

2yN−1 + (−2 + ∆x2QN)yN = ∆x2FN −∆x(2 + ∆xPi)y
′
N

Again a tridiagonal system of equations.
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Boundary condition at infinity

Two procedures for implementing boundary conditions at
infinity.

Replace ∞ with a large value of x (x = X)
Asymptotic solution at large values of x
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Higher order methods

For shooting method – it is quite clear how one can use a
higher order method. There is hardly any limitation.

For finite differencing, one has to go to higher order finite
differencing to get a better y′ and y′′. Higher order finite
differencing formulae exist, but the coding becomes a bit
messier.
Problem with the method near the boundaries.. central
differencing cannot be applied near the boundaries. So,
some forward/backward differencing is used there.
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Non linear boundary value problems

With the shooting method, the solution of nonlinear
boundary value problems is quite straighforward.

With the finite differencing, this is much more complicated
as the corresponding Finite differencing Equation is
non-linear. This leads to a non-linear system of FDE’s.
Have to use Newton’s iteration method to solve these.
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Systems of 2nd order boundary value problems

Within the shooting method – each 2nd order BVP is
reduced to a first order ODE. Then one just has to solve a
system of coupled first order ODEs.

Each 2nd order ODE can be solved using finite
differencing. The coupling between the two individual
equation can be accomplished by relaxation/fixed point
iteration.
By either approach, the solution is quite difficult.
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