
Ordinary Di�erential Equations

Varying the step size.

Verlet method.

Leapfrog method.
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Varying the step size

In most cases, we can get better results if we allow the
step size to vary during the running of the program, with
the program choosing the best value at each step.

In the regions the solution is varying slowly, one needs
few, widely spaced points.
In the regions the solution is varying rapidly, one need
points that are more closely spaced!
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Varying the step size

Basic idea is to vary the step sizes h so that the error
introduced per unit interval in t is roughly the same �
dx/dt = f(x, t).

In practice:

First we have to estimate the error on our steps.

Then compare the error to required accuracy and either

increase or decrease the step size to achieve the accuracy we

want.

Illustrate this approach using 4th order Runge Kutta.
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Varying the step size

Start with some initial value of h � and do �rst two steps
of the solution. So � starting at x(t) we have an estimate
for x(t+ 2h).

Now going back to t again � we reach x(t+ 2h) in just
one Runge-Kutta step.
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Varying the step size

Error in single step of 4th order Runge-Kutta is O(h5).

True value of x(t+ 2h) from the �rst estimate:

x(t+ 2h) = x1 + 2ch5

From the second 2h step:

x(t+ 2h) = x2 + 32ch5

Equating the two, the error ε on steps of size h is:

ε = ch5 = 1
30
(x1 − x2)
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Varying the step size

Our goal is to make this error exactly equal to some
target value.

Let h′ be the step size which makes this error reach the
target value. Error in a single step is:

ε′ =ch′5 = ch5
(
h′

h

)5

= 1
30
|x1 − x2|

(
h′

h

)5

If our target accuracy per unit time is δ, the error for each
step is h′δ.

h′ = h

(
30hδ

|x1 − x2|

)1/4

= hρ1/4

where ρ = 30hδ
|x1−x2| .
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Varying the step size

Thus, after each step of the process (determining x1 and
x2), depending on the value of ρ, the value of h in the
next step is increased or decreased.

An upper bound is placed on the change in step size to
prevent the problem when x1 ≈ x2.

If there are two variables, then one can de�ne a composite
error index, such as ε2 = ε21 + ε22 or just one of them
depending on the situation.

This method is very widely used!

7/14



Varying the step size

Thus, after each step of the process (determining x1 and
x2), depending on the value of ρ, the value of h in the
next step is increased or decreased.

An upper bound is placed on the change in step size to
prevent the problem when x1 ≈ x2.

If there are two variables, then one can de�ne a composite
error index, such as ε2 = ε21 + ε22 or just one of them
depending on the situation.

This method is very widely used!

7/14



Varying the step size

Thus, after each step of the process (determining x1 and
x2), depending on the value of ρ, the value of h in the
next step is increased or decreased.

An upper bound is placed on the change in step size to
prevent the problem when x1 ≈ x2.

If there are two variables, then one can de�ne a composite
error index, such as ε2 = ε21 + ε22 or just one of them
depending on the situation.

This method is very widely used!

7/14



Varying the step size

Thus, after each step of the process (determining x1 and
x2), depending on the value of ρ, the value of h in the
next step is increased or decreased.

An upper bound is placed on the change in step size to
prevent the problem when x1 ≈ x2.

If there are two variables, then one can de�ne a composite
error index, such as ε2 = ε21 + ε22 or just one of them
depending on the situation.

This method is very widely used!

7/14



Local extrapolation

Basically we know that:

x(t+ 2h) = x1 + 2ch5 +O(h6)

Using the expression for ch5:

x(t+ 2h) = x(t) + 1
15
(x1 − x2) +O(h6)

This trick is called local extrapolation.

This can be easily incorporated in the code and can give a
modest improvement in the accuracy of the results.
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The Leapfrog method

Consider:
dx

dt
= f(x, t)

In the second order Runge-Kutta method, one estimates
the value of x(t+ h) by using the slope at the midpoint
f(x(t+ 1

2
h), t+ 1

2
h). But as one does not know the value

at the midpoint, it is calculated using Euler's method:

x(t+ 1
2
h) =x(t) + 1

2
hf(x, t)

x(t+ h) =x(t) + hf(x(t+ 1
2
h), t+ 1

2
h)

The leapfrog method is a variant of this idea � this
method starts out the same way as Runge-Kutta with a
half-step to the midpoint, followed by a full step to
calculate x(t+ h) � but then rather than calculating the
next midpoint value from x(t+ h), it is calculated from
the previous midpoint value x(t+ 1

2
h).
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The Leapfrog method

x(t+ h) =x(t) + hf(x(t+ 1
2
h), t+ 1

2
h)

x(t+ 3
2
h) =x(t+ 1

2
h) + hf(x(t+ h), t+ h)
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The Leapfrog method

On the face of it, this method o�ers nothing more than a
second-order Runge-Kutta method.

It is time reversal symmetric, which makes it useful for
physics problems where energy conservation is important.

The error is even in the step size h, which makes it an
ideal starting point for Richardson extrapolation!
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The Leapfrog method

Suppose we start the leapfrog method by giving two
values x(t1) and x(t1 +

1
2
h).

Suppose we continue the solution to a later time t = t2,
calculating x(t2) and x(t2 +

1
2
h).

Time reversal symmetry means that if we take these
values and use the Leapfrog method backwards, with time
interval −h, then we will retrace our steps and recover the
values x(t1) and x(t1 +

1
2
h).

This is important because it conserves energy.

Leapfrog method is time-reversal symmetric, but
Runge-Kutta is not!!!

Does not mean that leapfrog gives exact solutions � the
error is in third order.

Energy is conserved does not mean it is constant over
some cycle � it may oscillate � but will not drift.
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The Verlet method

Suppose we are using the Leapfrog method to solve the
classical equations of motion.

dx

dt
= v

dv

dt
= f(x, t)

Rather than using a Leapfrog method on the vector
equation, r = (x, v), we will start by assuming that we are
given x at some time t and the value of v at time t+ 1

2
h :

x(t+ h) =x(t) + hv(t+ 1
2
h)

v(t+ 3
2
h) =v(t+ 1

2
h) + hf(x(t+ h), t+ h)

The values of x are only available at integer multiples of
h, while the velocity is at half integer multiples.
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The Verlet Method

Given the initial values of x and v at some time t :

v(t+ 1
2
h) =v(t) + 1

2
hf(x(t), t)

x(t+ h) =c(t) + hv(t+ 1
2
h)

k =hf(x(t+ h), t+ h)

v(t+ h) =v(t+ 1
2
h) + 1

2
k

v(t+ 3
2
h) =v(t+ 1

2
h) + k

Notice in the above equations, v(t+ h) is calculated even
though it is not really needed. This is done to ensure that one
can calculate total energy at any time, where both x and v are
available.
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