
Ordinary Differential Equations

Euler’s method.
Runge Kutta methods.
Simultaneous differential equations.
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Euler’s method

Let us use the Euler’s method to solve the differential
equation:

dx

dt
= −x3 + sin t
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Euler’s method – output

This is a reasonable representation of the actual solution. 3/21



Runge-Kutta methods

Runge-Kutta method is really a set of methods – there
are many of them with different orders, which give varying
degrees of accuracy.

Runge-Kutta methods propagate a solution over an
interval by combining information from several Euler-style
steps, and then using the information obtained to match a
Taylor series expansion up to some order.
For many scientific users, fourth-order Runge-Kutta is not
just the first word on solving ODE, but the last word as
well.
Technically, Euler’s method is the first-order Runge-Kutta
method.
Consider the next method in the series – the second-order
Runge-Kutta method.
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Runge-Kutta methods

dx

dt
= f(x, t)

Euler’s method can be represented as:

If we use the slope at t+ 1
2
h to extrapolate, we do better!
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Runge-Kutta methods

Performing the Taylor expansion arount t+ 1
2
h:

x(t+h) = x(t+1
2
h)+1

2
h

(
dx

dt

)
t+ 1

2
h

+1
8
h2

(
d2x

dt2

)
t+ 1

2
h

+O(h3)

Similarly:

x(t) = x(t+ 1
2
h)− 1

2
h

(
dx

dt

)
t+ 1

2
h

+ 1
8
h2

(
d2x

dt2

)
t+ 1

2
h

+O(h3)

x(t+ h) = x(t) + h

(
dx

dt

)
t+ 1

2
h

+O(h3)

= x(t) + hf(x(t+ 1
2
h), t+ 1

2
h) +O(h3)

Error is now O(h3)! Better than Euler (O(h2)).
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Runge-Kutta methods

Problem is that this requires the knowledge of x(t+ 1
2
h),

which we dont have!

We get around this by approximating x(t+ 1
2
h) using

Euler’s method:

x(t+ 1
2
h) = x(t) + 1

2
hf(x, t)

Then the whole algorithm becomes:

k1 = hf(x, t)

k2 = hf(x+ 1
2
k1, t+

1
2
h)

x(t+ h) = x(t) + k2

Error in each step is O(h3) and global error is O(h2).
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Second order Runge-Kutta method

Let us use the second-order Runge-Kutta method to solve the
differential equation:

dx

dt
= −x3 + sin t
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Second order Runge-Kutta method – output

N = 10, 20, 50, 100 Convergence at N = 50 vs 1000 for Euler 9/21



Fourth order Runge-Kutta method

Approach can be extended by performing Taylor
expansions around various points and taking the right
linear combinations to arrange h3, h4 terms to cancel!

Fourth order Runge-Kutta offers a balance between
accuracy and ease to program and is considered to be the
sweet spot.

k1 = hf(x, t)

k2 = hf(x+ 1
2
k1, t+

1
2
h)

k3 = hf(x+ 1
2
k2, t+

1
2
h)

k4 = hf(x+ k3, t+ h)

x(t+ h) = x(t) + 1
6
(k1 + 2k2 + 2k3 + k4)
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Fourth order Runge-Kutta method

Let us use the fourth-order Runge-Kutta method to solve the
differential equation:

dx

dt
= −x3 + sin t
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Fourth order Runge-Kutta method – output

N = 10, 20, 50, 100 Convergence at N = 20 vs 1000 for Euler 12/21



Solution over infinite ranges

In some cases, we want to march in time from some initial
value to not some finite value in time, but to t =∞.

Here we can play the same kind of tricks that we had
played while doing integrals – change of variables:

u =
t

1 + t
or t =

u

1− u

With this substitution, as u→ 1, t→∞.
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Solution over infinite ranges

dx

dt
= f(x, t)

Using Chain rule
dx

du

du

dt
= f(x, t)

dx

du
=

dt

du
f

(
x,

u

1− u

)
But

dt

du
=

1

(1− u)2

dx

du
= (1− u)−2f

(
x,

u

1− u

)
define g(x, u) ≡ (1− u)−2f

(
x,

u

1− u

)
dx

du
= g(x, u)
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Solution over infinite ranges

In principle, not only this transformation, but several
others can also be considered – such as those based on
trignometric functions, hyperbolic functions etc.

Choose the transformation which makes the algebra
easier!
Consider the following equation:

dx

dt
=

1

x2 + t2

with x = 1 at t = 0, and we would like to know the
solution from t = 0 to t =∞.
Using the substitution:

dx

du
=

1

x2(1− u)2 + u2

with x = 1 at u = 0 and range of u goes from u = 0 to
u = 1.
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Solution over infinite ranges – output
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Differential equations with more than one variable

In a lot of physics problems, we have more than one
variable – ie we have simultaneous differential equations,
where the derivative of each variable can depend on any or
all of the variables as well as the independent variable, t:

dx

dt
= fx(x, y, t)

dy

dt
= fy(x, y, t)

where fx and fy are possibly, nonlinear functions of
x, y and t.

These equations can be written in a vector form as:

dr

dt
= f(r, t)

where r = (x, y, . . .) and f is a vector of functions,
f(r, t) = (fx(r, t), fy(r, t), . . .).
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Differential equations with more than one variable

Computationally, these are not much more difficult than
one-variable case!

We can Taylor expand the vector r as:

r(t = h) = r(t) + h
dr

dt
+O(h2)

Then Euler’s method:

r(t+ h) = r(t) + hf(r, t)

Fourth order Runge-Kutta:

k1 = hf(r, t)

k2 = hf(r+ 1
2
k1, t+

1
2
h)

k3 = hf(r+ 1
2
k2, t+

1
2
h)

k4 = hf(r+ k3, t+ h)

r(t+ h) = r(t) + 1
6
(k1 + 2k2 + 2k3 + k4)
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Simultaneous differential equations – example

Consider the following equations:

dx

dt
= xy − x,

dy

dt
= y − xy + sin2 ωt

with initial conditions:

x = y = 1 at t = 0

and ω = 1.
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Simultaneous differential equations – code

20/21



Higher order differential equations

A general second-order differential equation:

d2x

dt2
= f

(
x,

dx

dt
, t

)

We can reduce it to 2 first-order ODEs:
dx

dt
= y,

dy

dt
= f(x, y, t)

Similarly for 3rd order equation:

d3x

dt3
= f

(
x,

dx

dt
,
d2x

dt2
, t

)
reduces to:

dx

dt
= y,

dy

dt
= z,

dz

dt
= f(x, y, z, t)

We can solve using methods we already know about
simultaneous equations.

21/21



Higher order differential equations

A general second-order differential equation:

d2x

dt2
= f

(
x,

dx

dt
, t

)
We can reduce it to 2 first-order ODEs:

dx

dt
= y,

dy

dt
= f(x, y, t)

Similarly for 3rd order equation:

d3x

dt3
= f

(
x,

dx

dt
,
d2x

dt2
, t

)
reduces to:

dx

dt
= y,

dy

dt
= z,

dz

dt
= f(x, y, z, t)

We can solve using methods we already know about
simultaneous equations.

21/21



Higher order differential equations

A general second-order differential equation:

d2x

dt2
= f

(
x,

dx

dt
, t

)
We can reduce it to 2 first-order ODEs:

dx

dt
= y,

dy

dt
= f(x, y, t)

Similarly for 3rd order equation:

d3x

dt3
= f

(
x,

dx

dt
,
d2x

dt2
, t

)
reduces to:

dx

dt
= y,

dy

dt
= z,

dz

dt
= f(x, y, z, t)

We can solve using methods we already know about
simultaneous equations.

21/21



Higher order differential equations

A general second-order differential equation:

d2x

dt2
= f

(
x,

dx

dt
, t

)
We can reduce it to 2 first-order ODEs:

dx

dt
= y,

dy

dt
= f(x, y, t)

Similarly for 3rd order equation:

d3x

dt3
= f

(
x,

dx

dt
,
d2x

dt2
, t

)
reduces to:

dx

dt
= y,

dy

dt
= z,

dz

dt
= f(x, y, z, t)

We can solve using methods we already know about
simultaneous equations.

21/21


