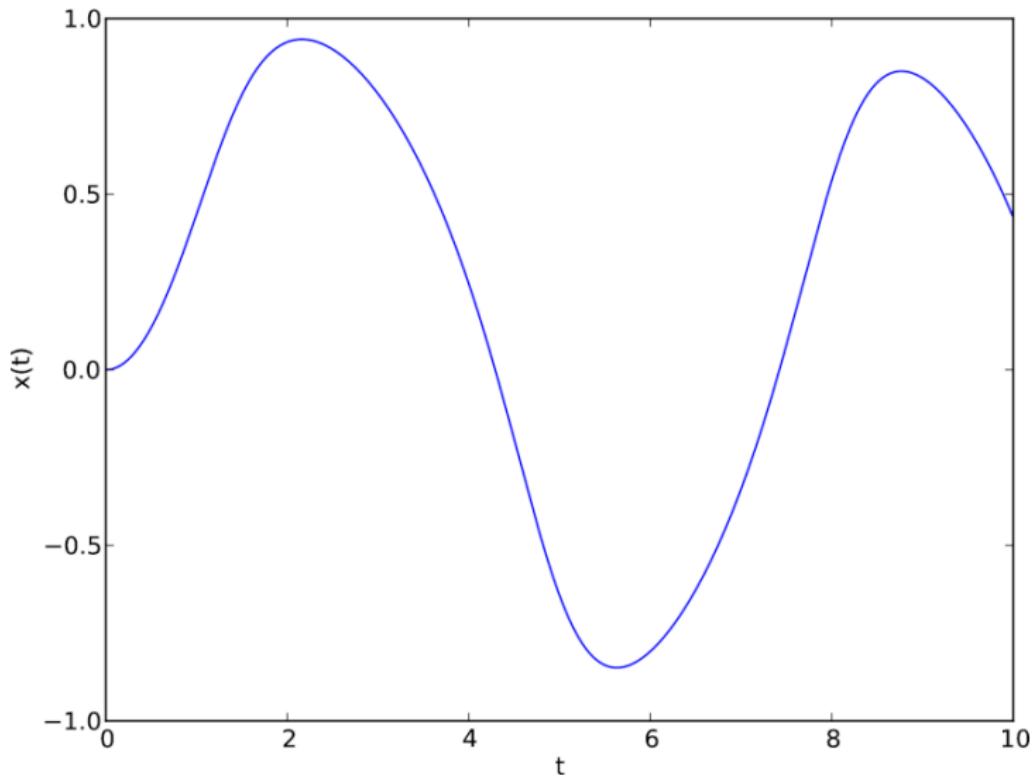


- Euler's method.
- Runge Kutta methods.
- Simultaneous differential equations.

Let us use the Euler's method to solve the differential equation:

$$\frac{dx}{dt} = -x^3 + \sin t$$

Euler's method – output



This is a reasonable representation of the actual solution.

- Runge-Kutta method is really a set of methods – there are many of them with different orders, which give varying degrees of accuracy.

- Runge-Kutta method is really a set of methods – there are many of them with different orders, which give varying degrees of accuracy.
- Runge-Kutta methods propagate a solution over an interval by combining information from several Euler-style steps, and then using the information obtained to match a Taylor series expansion up to some order.

- Runge-Kutta method is really a set of methods – there are many of them with different orders, which give varying degrees of accuracy.
- Runge-Kutta methods propagate a solution over an interval by combining information from several Euler-style steps, and then using the information obtained to match a Taylor series expansion up to some order.
- For many scientific users, fourth-order Runge-Kutta is not just the first word on solving ODE, but the last word as well.

- Runge-Kutta method is really a set of methods – there are many of them with different orders, which give varying degrees of accuracy.
- Runge-Kutta methods propagate a solution over an interval by combining information from several Euler-style steps, and then using the information obtained to match a Taylor series expansion up to some order.
- For many scientific users, fourth-order Runge-Kutta is not just the first word on solving ODE, but the last word as well.
- Technically, Euler's method is the first-order Runge-Kutta method.

- Runge-Kutta method is really a set of methods – there are many of them with different orders, which give varying degrees of accuracy.
- Runge-Kutta methods propagate a solution over an interval by combining information from several Euler-style steps, and then using the information obtained to match a Taylor series expansion up to some order.
- For many scientific users, fourth-order Runge-Kutta is not just the first word on solving ODE, but the last word as well.
- Technically, Euler's method is the first-order Runge-Kutta method.
- Consider the next method in the series – the second-order Runge-Kutta method.

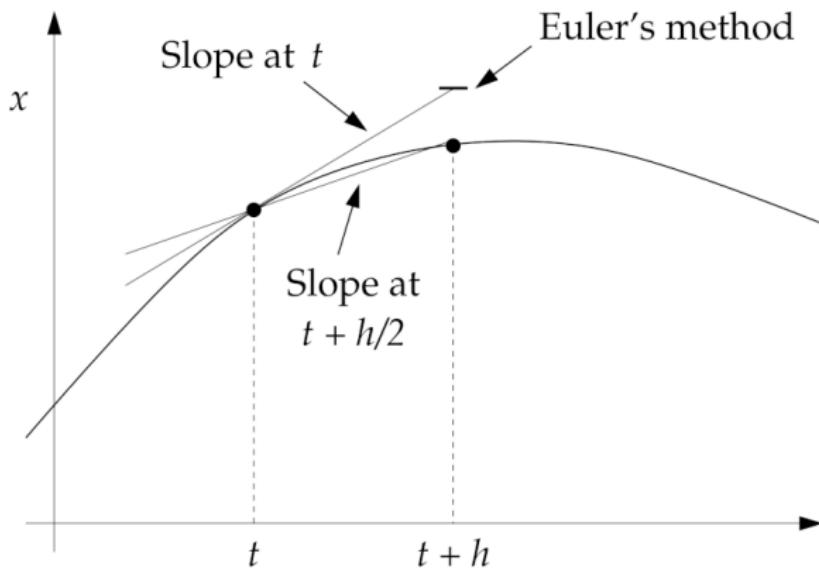
Runge-Kutta methods

$$\frac{dx}{dt} = f(x, t)$$

Runge-Kutta methods

$$\frac{dx}{dt} = f(x, t)$$

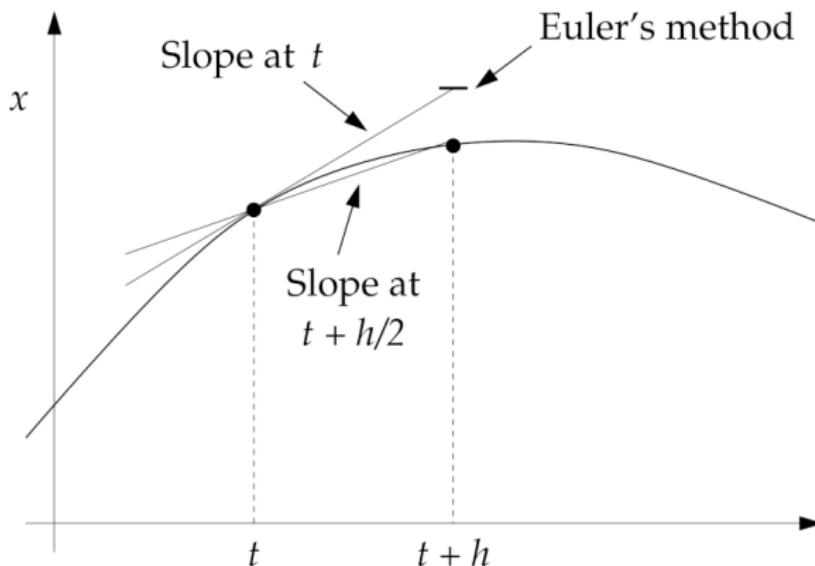
- Euler's method can be represented as:



Runge-Kutta methods

$$\frac{dx}{dt} = f(x, t)$$

- Euler's method can be represented as:



- If we use the slope at $t + \frac{1}{2}h$ to extrapolate, we do better!

Runge-Kutta methods

- Performing the Taylor expansion around $t + \frac{1}{2}h$:

$$x(t+h) = x(t+\frac{1}{2}h) + \frac{1}{2}h \left(\frac{dx}{dt} \right)_{t+\frac{1}{2}h} + \frac{1}{8}h^2 \left(\frac{d^2x}{dt^2} \right)_{t+\frac{1}{2}h} + \mathcal{O}(h^3)$$

Runge-Kutta methods

- Performing the Taylor expansion around $t + \frac{1}{2}h$:

$$x(t+h) = x(t + \frac{1}{2}h) + \frac{1}{2}h \left(\frac{dx}{dt} \right)_{t + \frac{1}{2}h} + \frac{1}{8}h^2 \left(\frac{d^2x}{dt^2} \right)_{t + \frac{1}{2}h} + \mathcal{O}(h^3)$$

- Similarly:

$$x(t) = x(t + \frac{1}{2}h) - \frac{1}{2}h \left(\frac{dx}{dt} \right)_{t + \frac{1}{2}h} + \frac{1}{8}h^2 \left(\frac{d^2x}{dt^2} \right)_{t + \frac{1}{2}h} + \mathcal{O}(h^3)$$

Runge-Kutta methods

- Performing the Taylor expansion around $t + \frac{1}{2}h$:

$$x(t+h) = x(t + \frac{1}{2}h) + \frac{1}{2}h \left(\frac{dx}{dt} \right)_{t + \frac{1}{2}h} + \frac{1}{8}h^2 \left(\frac{d^2x}{dt^2} \right)_{t + \frac{1}{2}h} + \mathcal{O}(h^3)$$

- Similarly:

$$x(t) = x(t + \frac{1}{2}h) - \frac{1}{2}h \left(\frac{dx}{dt} \right)_{t + \frac{1}{2}h} + \frac{1}{8}h^2 \left(\frac{d^2x}{dt^2} \right)_{t + \frac{1}{2}h} + \mathcal{O}(h^3)$$

$$\begin{aligned} x(t+h) &= x(t) + h \left(\frac{dx}{dt} \right)_{t + \frac{1}{2}h} + \mathcal{O}(h^3) \\ &= x(t) + h f(x(t + \frac{1}{2}h), t + \frac{1}{2}h) + \mathcal{O}(h^3) \end{aligned}$$

Runge-Kutta methods

- Performing the Taylor expansion around $t + \frac{1}{2}h$:

$$x(t+h) = x(t + \frac{1}{2}h) + \frac{1}{2}h \left(\frac{dx}{dt} \right)_{t + \frac{1}{2}h} + \frac{1}{8}h^2 \left(\frac{d^2x}{dt^2} \right)_{t + \frac{1}{2}h} + \mathcal{O}(h^3)$$

- Similarly:

$$x(t) = x(t + \frac{1}{2}h) - \frac{1}{2}h \left(\frac{dx}{dt} \right)_{t + \frac{1}{2}h} + \frac{1}{8}h^2 \left(\frac{d^2x}{dt^2} \right)_{t + \frac{1}{2}h} + \mathcal{O}(h^3)$$

$$\begin{aligned} x(t+h) &= x(t) + h \left(\frac{dx}{dt} \right)_{t + \frac{1}{2}h} + \mathcal{O}(h^3) \\ &= x(t) + h f(x(t + \frac{1}{2}h), t + \frac{1}{2}h) + \mathcal{O}(h^3) \end{aligned}$$

Error is now $\mathcal{O}(h^3)$! Better than Euler ($\mathcal{O}(h^2)$).

- Problem is that this requires the knowledge of $x(t + \frac{1}{2}h)$, which we dont have!

Runge-Kutta methods

- Problem is that this requires the knowledge of $x(t + \frac{1}{2}h)$, which we don't have!
- We get around this by approximating $x(t + \frac{1}{2}h)$ using Euler's method:

$$x(t + \frac{1}{2}h) = x(t) + \frac{1}{2}h f(x, t)$$

- Problem is that this requires the knowledge of $x(t + \frac{1}{2}h)$, which we don't have!
- We get around this by approximating $x(t + \frac{1}{2}h)$ using Euler's method:

$$x(t + \frac{1}{2}h) = x(t) + \frac{1}{2}hf(x, t)$$

- Then the whole algorithm becomes:

$$k_1 = hf(x, t)$$

$$k_2 = hf(x + \frac{1}{2}k_1, t + \frac{1}{2}h)$$

$$x(t + h) = x(t) + k_2$$

- Problem is that this requires the knowledge of $x(t + \frac{1}{2}h)$, which we don't have!
- We get around this by approximating $x(t + \frac{1}{2}h)$ using Euler's method:

$$x(t + \frac{1}{2}h) = x(t) + \frac{1}{2}hf(x, t)$$

- Then the whole algorithm becomes:

$$k_1 = hf(x, t)$$

$$k_2 = hf(x + \frac{1}{2}k_1, t + \frac{1}{2}h)$$

$$x(t + h) = x(t) + k_2$$

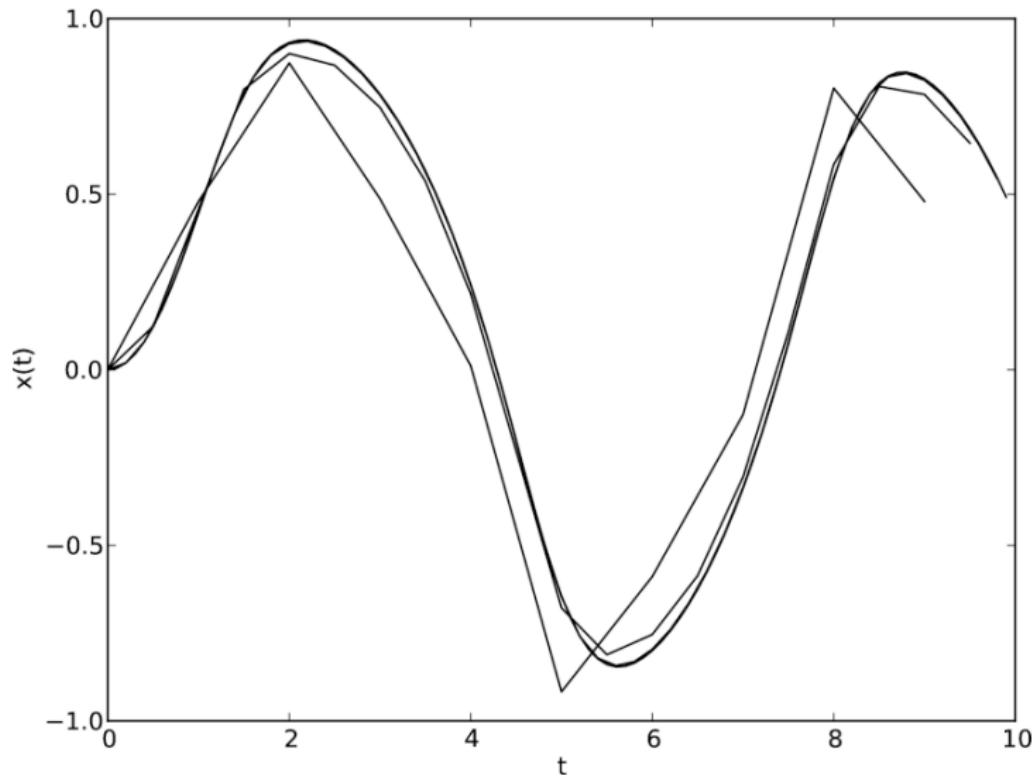
- Error in each step is $\mathcal{O}(h^3)$ and global error is $\mathcal{O}(h^2)$.

Second order Runge-Kutta method

Let us use the second-order Runge-Kutta method to solve the differential equation:

$$\frac{dx}{dt} = -x^3 + \sin t$$

Second order Runge-Kutta method – output



$N = 10, 20, 50, 100$ Convergence at $N = 50$ vs 1000 for Euler

- Approach can be extended by performing Taylor expansions around various points and taking the right linear combinations to arrange h^3, h^4 terms to cancel!

- Approach can be extended by performing Taylor expansions around various points and taking the right linear combinations to arrange h^3, h^4 terms to cancel!
- Fourth order Runge-Kutta offers a balance between accuracy and ease to program and is considered to be the sweet spot.

$$k_1 = h f(x, t)$$

$$k_2 = h f\left(x + \frac{1}{2}k_1, t + \frac{1}{2}h\right)$$

$$k_3 = h f\left(x + \frac{1}{2}k_2, t + \frac{1}{2}h\right)$$

$$k_4 = h f(x + k_3, t + h)$$

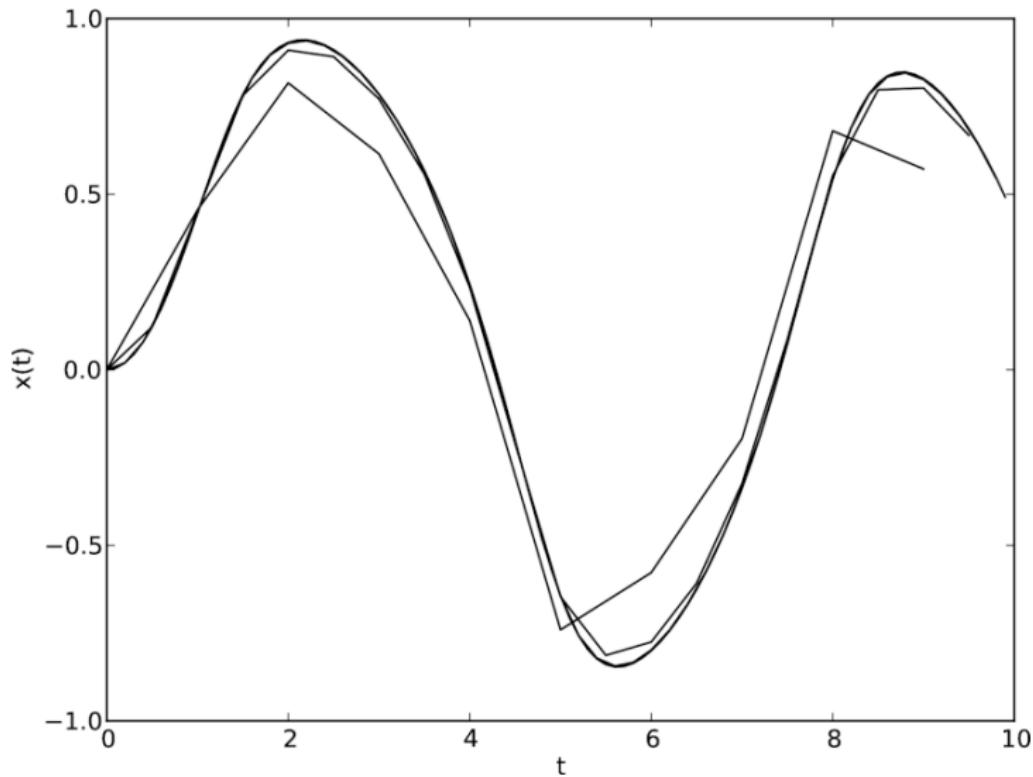
$$x(t + h) = x(t) + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

Fourth order Runge-Kutta method

Let us use the fourth-order Runge-Kutta method to solve the differential equation:

$$\frac{dx}{dt} = -x^3 + \sin t$$

Fourth order Runge-Kutta method – output



$N = 10, 20, 50, 100$ Convergence at $N = 20$ vs 1000 for Euler

Solution over infinite ranges

- In some cases, we want to march in time from some initial value to not some finite value in time, but to $t = \infty$.

- In some cases, we want to march in time from some initial value to not some finite value in time, but to $t = \infty$.
- Here we can play the same kind of tricks that we had played while doing integrals – change of variables:

$$u = \frac{t}{1+t} \quad \text{or} \quad t = \frac{u}{1-u}$$

- In some cases, we want to march in time from some initial value to not some finite value in time, but to $t = \infty$.
- Here we can play the same kind of tricks that we had played while doing integrals – change of variables:

$$u = \frac{t}{1+t} \quad \text{or} \quad t = \frac{u}{1-u}$$

- With this substitution, as $u \rightarrow 1$, $t \rightarrow \infty$.

Solution over infinite ranges

$$\frac{dx}{dt} = f(x, t)$$

Using Chain rule $\frac{dx}{du} \frac{du}{dt} = f(x, t)$

$$\frac{dx}{du} = \frac{dt}{du} f\left(x, \frac{u}{1-u}\right)$$

But $\frac{dt}{du} = \frac{1}{(1-u)^2}$

$$\frac{dx}{du} = (1-u)^{-2} f\left(x, \frac{u}{1-u}\right)$$

define $g(x, u) \equiv (1-u)^{-2} f\left(x, \frac{u}{1-u}\right)$

$$\frac{dx}{du} = g(x, u)$$

- In principle, not only this transformation, but several others can also be considered – such as those based on trigonometric functions, hyperbolic functions etc.

- In principle, not only this transformation, but several others can also be considered – such as those based on trigonometric functions, hyperbolic functions etc.
- Choose the transformation which makes the algebra easier!

- In principle, not only this transformation, but several others can also be considered – such as those based on trigonometric functions, hyperbolic functions etc.
- Choose the transformation which makes the algebra easier!
- Consider the following equation:

$$\frac{dx}{dt} = \frac{1}{x^2 + t^2}$$

with $x = 1$ at $t = 0$, and we would like to know the solution from $t = 0$ to $t = \infty$.

- In principle, not only this transformation, but several others can also be considered – such as those based on trigonometric functions, hyperbolic functions etc.
- Choose the transformation which makes the algebra easier!
- Consider the following equation:

$$\frac{dx}{dt} = \frac{1}{x^2 + t^2}$$

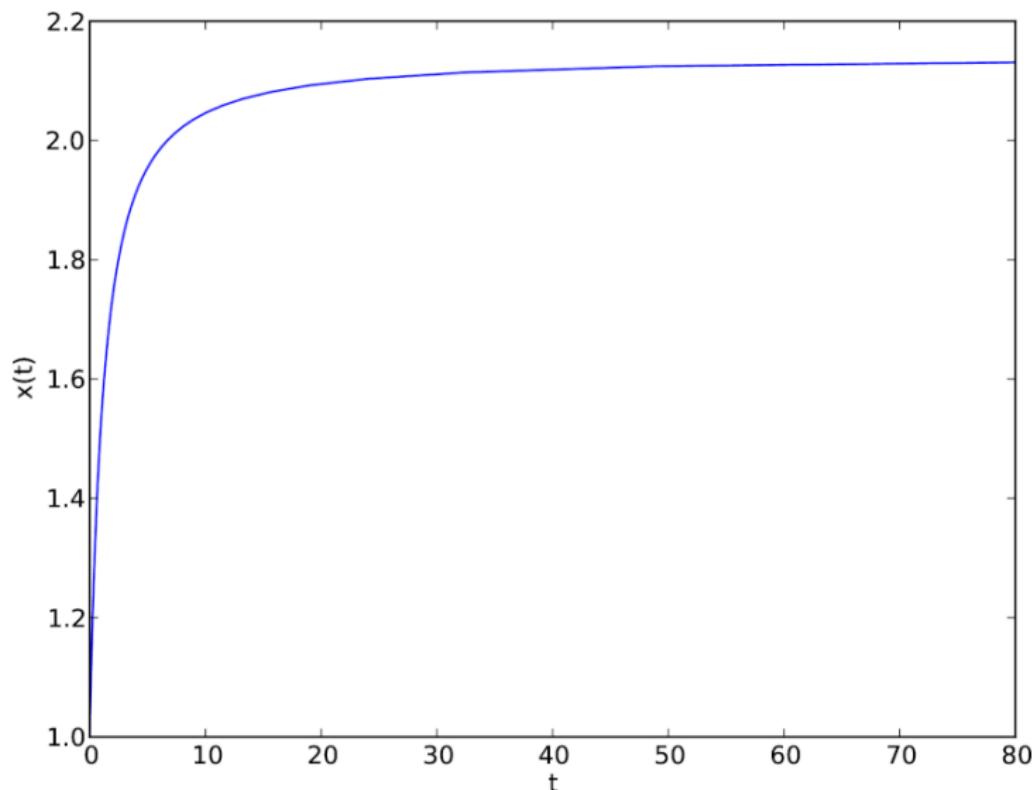
with $x = 1$ at $t = 0$, and we would like to know the solution from $t = 0$ to $t = \infty$.

- Using the substitution:

$$\frac{dx}{du} = \frac{1}{x^2(1-u)^2 + u^2}$$

with $x = 1$ at $u = 0$ and range of u goes from $u = 0$ to $u = 1$.

Solution over infinite ranges – output



- In a lot of physics problems, we have more than one variable – ie we have simultaneous differential equations, where the derivative of each variable can depend on any or all of the variables as well as the independent variable, t :

$$\frac{dx}{dt} = f_x(x, y, t) \quad \frac{dy}{dt} = f_y(x, y, t)$$

where f_x and f_y are possibly, nonlinear functions of x, y and t .

- In a lot of physics problems, we have more than one variable – ie we have simultaneous differential equations, where the derivative of each variable can depend on any or all of the variables as well as the independent variable, t :

$$\frac{dx}{dt} = f_x(x, y, t) \quad \frac{dy}{dt} = f_y(x, y, t)$$

where f_x and f_y are possibly, nonlinear functions of x, y and t .

- These equations can be written in a vector form as:

$$\frac{d\mathbf{r}}{dt} = \mathbf{f}(\mathbf{r}, t)$$

where $\mathbf{r} = (x, y, \dots)$ and \mathbf{f} is a vector of functions, $\mathbf{f}(\mathbf{r}, t) = (f_x(\mathbf{r}, t), f_y(\mathbf{r}, t), \dots)$.

- Computationally, these are not much more difficult than one-variable case!

- Computationally, these are not much more difficult than one-variable case!
- We can Taylor expand the vector \mathbf{r} as:

$$\mathbf{r}(t = h) = \mathbf{r}(t) + h \frac{d\mathbf{r}}{dt} + \mathcal{O}(h^2)$$

- Computationally, these are not much more difficult than one-variable case!
- We can Taylor expand the vector \mathbf{r} as:

$$\mathbf{r}(t = h) = \mathbf{r}(t) + h \frac{d\mathbf{r}}{dt} + \mathcal{O}(h^2)$$

- Then Euler's method:

$$\mathbf{r}(t + h) = \mathbf{r}(t) + h\mathbf{f}(\mathbf{r}, t)$$

- Computationally, these are not much more difficult than one-variable case!
- We can Taylor expand the vector \mathbf{r} as:

$$\mathbf{r}(t = h) = \mathbf{r}(t) + h \frac{d\mathbf{r}}{dt} + \mathcal{O}(h^2)$$

- Then Euler's method:

$$\mathbf{r}(t + h) = \mathbf{r}(t) + h\mathbf{f}(\mathbf{r}, t)$$

- Fourth order Runge-Kutta:

$$\mathbf{k}_1 = h\mathbf{f}(\mathbf{r}, t)$$

$$\mathbf{k}_2 = h\mathbf{f}\left(\mathbf{r} + \frac{1}{2}\mathbf{k}_1, t + \frac{1}{2}h\right)$$

$$\mathbf{k}_3 = h\mathbf{f}\left(\mathbf{r} + \frac{1}{2}\mathbf{k}_2, t + \frac{1}{2}h\right)$$

$$\mathbf{k}_4 = h\mathbf{f}(\mathbf{r} + \mathbf{k}_3, t + h)$$

$$\mathbf{r}(t + h) = \mathbf{r}(t) + \frac{1}{6}(\mathbf{k}_1 + 2\mathbf{k}_2 + 2\mathbf{k}_3 + \mathbf{k}_4)$$

Consider the following equations:

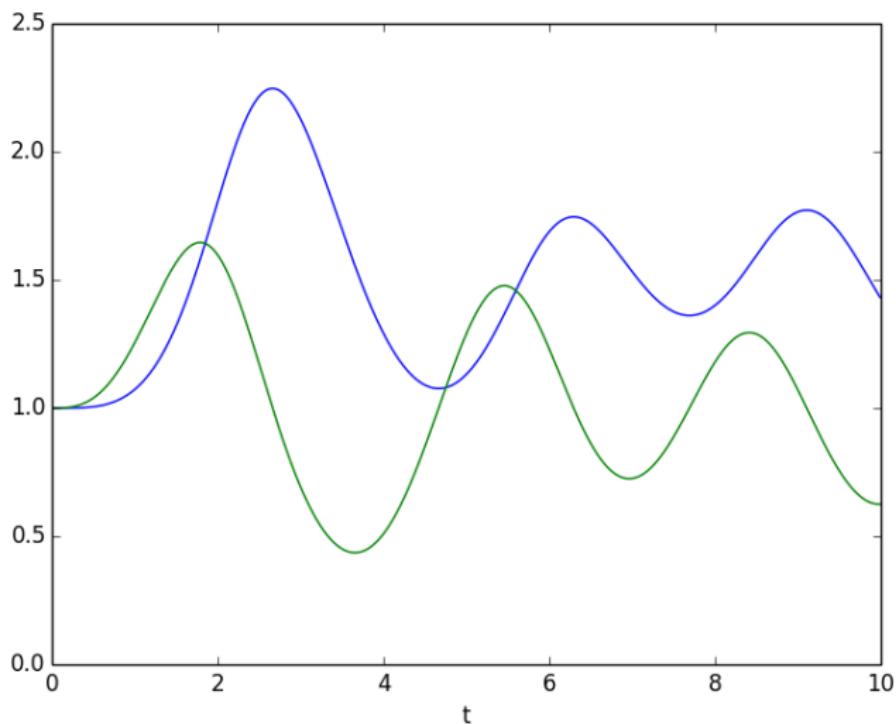
$$\frac{dx}{dt} = xy - x, \quad \frac{dy}{dt} = y - xy + \sin^2 \omega t$$

with initial conditions:

$$x = y = 1 \quad \text{at} \quad t = 0$$

and $\omega = 1$.

Simultaneous differential equations – code



- A general second-order differential equation:

$$\frac{d^2x}{dt^2} = f\left(x, \frac{dx}{dt}, t\right)$$

- A general second-order differential equation:

$$\frac{d^2x}{dt^2} = f\left(x, \frac{dx}{dt}, t\right)$$

- We can reduce it to 2 first-order ODEs:

$$\frac{dx}{dt} = y, \quad \frac{dy}{dt} = f(x, y, t)$$

- A general second-order differential equation:

$$\frac{d^2x}{dt^2} = f\left(x, \frac{dx}{dt}, t\right)$$

- We can reduce it to 2 first-order ODEs:

$$\frac{dx}{dt} = y, \quad \frac{dy}{dt} = f(x, y, t)$$

- Similarly for 3rd order equation:

$$\frac{d^3x}{dt^3} = f\left(x, \frac{dx}{dt}, \frac{d^2x}{dt^2}, t\right)$$

reduces to:

$$\frac{dx}{dt} = y, \quad \frac{dy}{dt} = z, \quad \frac{dz}{dt} = f(x, y, z, t)$$

- A general second-order differential equation:

$$\frac{d^2x}{dt^2} = f\left(x, \frac{dx}{dt}, t\right)$$

- We can reduce it to 2 first-order ODEs:

$$\frac{dx}{dt} = y, \quad \frac{dy}{dt} = f(x, y, t)$$

- Similarly for 3rd order equation:

$$\frac{d^3x}{dt^3} = f\left(x, \frac{dx}{dt}, \frac{d^2x}{dt^2}, t\right)$$

reduces to:

$$\frac{dx}{dt} = y, \quad \frac{dy}{dt} = z, \quad \frac{dz}{dt} = f(x, y, z, t)$$

- We can solve using methods we already know about simultaneous equations.