Ordinary Differential Equations

m Euler's method.
m Runge Kutta methods.
m Simultaneous differential equations.
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Euler's method

Let us use the Euler's method to solve the differential

equation:
dx

3 .
— = —2° +sint
dt
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Euler's method — output

1.0

x(t)

-1.0

10

This is a reasonable representation of the actual solution.
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Runge-Kutta methods

m Runge-Kutta method is really a set of methods — there
are many of them with different orders, which give varying
degrees of accuracy.
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Runge-Kutta methods

Runge-Kutta method is really a set of methods — there
are many of them with different orders, which give varying
degrees of accuracy.

Runge-Kutta methods propagate a solution over an
interval by combining information from several Euler-style
steps, and then using the information obtained to match a
Taylor series expansion up to some order.

For many scientific users, fourth-order Runge-Kutta is not
just the first word on solving ODE, but the last word as
well.

Technically, Euler's method is the first-order Runge-Kutta
method.

Consider the next method in the series — the second-order
Runge-Kutta method.
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Runge-Kutta methods
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Runge-Kutta methods

dx
dt

= j?(aa t)

m Euler's method can be represented as:

A

Slope at ¢

Slope at
[ Y

Euler’s method

t t+h
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Runge-Kutta methods

dx
_— = t
m Euler's method can be represented as:

A Euler’s method
Slope at ¢

Slope at
t+h/?2

t t+h

m If we use the slope at ¢ + 3 to extrapolate, we do betterl



Runge-Kutta methods

m Performing the Taylor expansion arount ¢ 4 %h:

d d?
z(t+h) = x(t+%h)+§h(d—f) +5h? (d—tf) +O(h%)
t+1h t+1h
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Runge-Kutta methods

m Performing the Taylor expansion arount ¢ 4 %h:
d d?
z(t+h) = x(t—l—%h)—l—%h(—x) +5h? (—f) +O(h?)
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m Performing the Taylor expansion arount ¢ 4 %h:
d d?
z(t+h) = x(t—l—%h)—l—%h(—x) +5h? (—f) +O(h?)
dt t+3h dt* /) oy 1n

m Similarly:

+3 +3

dx

x(t+h)=x(t) + h(£> . + O(h%)
t+5

= x(t) + hf (z(t + 1h),t + 1h) + O(R?)
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Runge-Kutta methods

m Performing the Taylor expansion arount ¢ 4 %h:
d d?
z(t+h) = x(t—l—%h)—l—%h(—x) +5h? (—f) +O(h?)
dt t+3h dt* /) oy 1n

m Similarly:

+3 +3

dx

x(t+h)=x(t) + h(£> . + O(h%)
t+5

= x(t) + hf (z(t + 1h),t + 1h) + O(R?)
Error is now O(h*)! Better than Euler (O(h?)).
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Runge-Kutta methods

m Problem is that this requires the knowledge of z(t + $h),
which we dont have!
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m We get around this by approximating =(t + %h) using
Euler's method:

z(t + %h) =z(t) + %hf(x,t)
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Runge-Kutta methods

m Problem is that this requires the knowledge of z(t + $h),
which we dont have!

m We get around this by approximating =(t + %h) using
Euler's method:

o(t+ 3h) = z(t) + Lhf(z, 1)
m Then the whole algorithm becomes:

kl = hf(.il?,t)
ko =hf(z+ 1k, t + 1h)
z(t + h) = x(t) + ko
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Runge-Kutta methods

m Problem is that this requires the knowledge of z(t + $h),
which we dont have!

m We get around this by approximating =(t + %h) using
Euler's method:

o(t+ 3h) = z(t) + Lhf(z, 1)
m Then the whole algorithm becomes:

kl = hf(.il?,t)
ko =hf(z+ 1k, t + 1h)
z(t + h) = x(t) + ko

m Error in each step is O(h?) and global error is O(h?).
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Second order Runge-Kutta method

Let us use the second-order Runge-Kutta method to solve the
differential equation:

dx

T —2% +sint
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Second order Runge-Kutta method — output

1.0

x(t)

N =10, 20, 50, 100 Convergence at N = 50 vs 1000 for Euler
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Fourth order Runge-Kutta method

m Approach can be extended by performing Taylor
expansions around various points and taking the right
linear combinations to arrange h?, h* terms to cancell

10/21



Fourth order Runge-Kutta method

m Approach can be extended by performing Taylor
expansions around various points and taking the right
linear combinations to arrange h?, h* terms to cancell

m Fourth order Runge-Kutta offers a balance between
accuracy and ease to program and is considered to be the
sweet spot.

klzhf< 1)
ke = hf(x+ $ki,t + 3h)
ks = hf(x + 3ka,t + 5h)
ky=hf(x+ ks, t+ h)
a(t + h) = x(t) + g (k1 + 2ko + 2ks + ky)
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Fourth order Runge-Kutta method

Let us use the fourth-order Runge-Kutta method to solve the
differential equation:

dx

T —2% +sint
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Fourth order Runge-Kutta method — output

1.0

0.5r

x(t)

0.0

—0.5}

-1.0

8 10
t

N =10, 20, 50, 100 Convergence at N = 20 vs 1000 for Euler
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Solution over infinite ranges

m In some cases, we want to march in time from some initial
value to not some finite value in time, but to ¢ = .
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Solution over infinite ranges

m In some cases, we want to march in time from some initial
value to not some finite value in time, but to ¢ = .

m Here we can play the same kind of tricks that we had
played while doing integrals — change of variables:
t U

Uu=-—— or t=
1+t 1—u

m With this substitution, as u — 1, t = oo.
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Solution over infinite ranges

dx
= = f(x,t
: : dx du

Using Chain rule P f(z,t)
de_d (0
du  du’ \"1—u
dt 1

But — =
R (1 —wu)?

dz

il SR Gy
define g(z,u) = (1 — u)‘2f(

@
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Solution over infinite ranges

m In principle, not only this transformation, but several
others can also be considered — such as those based on
trignometric functions, hyperbolic functions etc.

15/21



Solution over infinite ranges

m In principle, not only this transformation, but several
others can also be considered — such as those based on
trignometric functions, hyperbolic functions etc.

m Choose the transformation which makes the algebra

easier!

15/21



Solution over infinite ranges

m In principle, not only this transformation, but several
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m Consider the following equation:
de 1
dt a2+ 2

with z = 1 at t = 0, and we would like to know the
solution from ¢t =0 to ¢t = oo.
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Solution over infinite ranges

m In principle, not only this transformation, but several
others can also be considered — such as those based on
trignometric functions, hyperbolic functions etc.

m Choose the transformation which makes the algebra

easier!
m Consider the following equation:
de 1
dt a2+ 2

with z = 1 at t = 0, and we would like to know the
solution from ¢t =0 to ¢t = oo.
m Using the substitution:

dr 1
du 221 —u)? + u?
with z =1 at « = 0 and range of u goes from u = 0 to
u = 1.
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Solution over infinite ranges — output

2.2
2.0}
1.8}
< 16}
1.4
1.2
1.0y 10 20 30 4;0 50 60 70

80
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Differential equations with more than one variable

m In a lot of physics problems, we have more than one
variable — ie we have simultaneous differential equations,
where the derivative of each variable can depend on any or
all of the variables as well as the independent variable, t:

dx dy
E_fm(xﬂl/?t) %_fy('xayvt)

where f, and f, are possibly, nonlinear functions of
x,y and t.
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Differential equations with more than one variable

m In a lot of physics problems, we have more than one
variable — ie we have simultaneous differential equations,
where the derivative of each variable can depend on any or
all of the variables as well as the independent variable, t:

dx dy
E_fm(xﬂl/?t) %_fy('xayvt)

where f, and f, are possibly, nonlinear functions of
x,y and t.
m These equations can be written in a vector form as:

dr
— =f(r,¢
dt (r7 )
where r = (x,y,...) and f is a vector of functions,

f(r, 1) = (fo(r, 1), fy(r; 1), .).
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Differential equations with more than one variable

m Computationally, these are not much more difficult than
one-variable casel
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m We can Taylor expand the vector r as:
dr

r(t="h)=r(t)+ h% + O(h?)
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Differential equations with more than one variable

m Computationally, these are not much more difficult than
one-variable casel
m We can Taylor expand the vector r as:

dr

r(t =h) =r(t) —i—hdt

+ O(h?)
m Then Euler's method:

r(t+ h) =r(t) + hf(r,t)
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Differential equations with more than one variable

m Computationally, these are not much more difficult than
one-variable casel
m We can Taylor expand the vector r as:

r(t = h) = r(t) + h% +OM)

m Then Euler's method:
r(t+ h) =r(t) + hf(r,t)
m Fourth order Runge-Kutta:

k1 = hf( t)
h(r + 1k, t + L1h)
= hf( + 5k, L+ 3h)
:hf( —|—k3,t—|—h)

4
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Simultaneous differential equations — example

Consider the following equations:

dz dy 4 sin? wt
— =y — — =Y —x sl W
with initial conditions:

r=y=1 at t=0

and w = 1.
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Simultaneous differential equations — code

2.5

0.0
0

20/21



Higher order differential equations

m A general second-order differential equation:

d2x_f . dxt
ez Tdt’
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Higher order differential equations

m A general second-order differential equation:

d*x _ (s dz ;
dez T\ dt’
m We can reduce it to 2 first-order ODEs:
dx dy

%:Z% %:f(l',y,t)
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Higher order differential equations

m A general second-order differential equation:

d*x _ (s dx ;
dez T dt’
m We can reduce it to 2 first-order ODEs:

e dy f(x,y,t)

a Vow

m Similarly for 3rd order equation:
A3z dx d*x
an f(xﬁ’mt)
reduces to:

dx dy dz

- Y - =%,
Y dt

7 0 = f(z,y,2,1)
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Higher order differential equations

m A general second-order differential equation:

d*x _ (s dx ;
a2 T dt’
m We can reduce it to 2 first-order ODEs:
dx dy
%_3% %—f(l’,y,t)
m Similarly for 3rd order equation:

d3x_f xdm dzxt
a3 Tt dt2’

reduces to:
dx dy dz
%_gﬁ %_Za %_f(xay7zat)

m We can solve using methods we already know about
simultaneous equations.
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