
Ordinary Differential Equations

Types of Ordinary differential equations.
Euler’s method.

1/26



Differential equations

Most fundamental and basic equations in physics as well
as frequently occurring problems appear as differential
equations.

Perhaps the most common use of computers in physics is
for the solution of differential equations!
Examples :

m
d2x(t)

dt2
=− kx(t)

i~
∂ψ(x, t)

∂t
=− 1

2m

∂2ψ(x, t)

∂x2
+ V (x)ψ(x, t)

2/26



Differential equations

Most fundamental and basic equations in physics as well
as frequently occurring problems appear as differential
equations.
Perhaps the most common use of computers in physics is
for the solution of differential equations!

Examples :

m
d2x(t)

dt2
=− kx(t)

i~
∂ψ(x, t)

∂t
=− 1

2m

∂2ψ(x, t)

∂x2
+ V (x)ψ(x, t)

2/26



Differential equations

Most fundamental and basic equations in physics as well
as frequently occurring problems appear as differential
equations.
Perhaps the most common use of computers in physics is
for the solution of differential equations!
Examples :

m
d2x(t)

dt2
=− kx(t)

i~
∂ψ(x, t)

∂t
=− 1

2m

∂2ψ(x, t)

∂x2
+ V (x)ψ(x, t)

2/26



Classification of differential equations

Ordinary vs Partial differential equations.

Linear vs non-linear differential equations.
Homogeneous vs non-homogeneous differential equations.
General solution vs particular solution of the differential
equation.
Initial value problem vs boundary value problem vs
eigenvalue problem.

3/26



Classification of differential equations

Ordinary vs Partial differential equations.
Linear vs non-linear differential equations.

Homogeneous vs non-homogeneous differential equations.
General solution vs particular solution of the differential
equation.
Initial value problem vs boundary value problem vs
eigenvalue problem.

3/26



Classification of differential equations

Ordinary vs Partial differential equations.
Linear vs non-linear differential equations.
Homogeneous vs non-homogeneous differential equations.

General solution vs particular solution of the differential
equation.
Initial value problem vs boundary value problem vs
eigenvalue problem.

3/26



Classification of differential equations

Ordinary vs Partial differential equations.
Linear vs non-linear differential equations.
Homogeneous vs non-homogeneous differential equations.
General solution vs particular solution of the differential
equation.

Initial value problem vs boundary value problem vs
eigenvalue problem.

3/26



Classification of differential equations

Ordinary vs Partial differential equations.
Linear vs non-linear differential equations.
Homogeneous vs non-homogeneous differential equations.
General solution vs particular solution of the differential
equation.
Initial value problem vs boundary value problem vs
eigenvalue problem.

3/26



Simple Harmonic Oscillator

m
d2x(t)

dt2
= −kx(t)

x(t = 0) = x0

dx

dt

∣∣∣∣
t=0

= v0

is initial value problem for the second order ordinary linear
homogeneous differential equation

4/26



Ordinary vs Partial differential equations

The ordinary differential equations (ODE) – have
functions of one only independent variable.
Example: stationary Schrödinger equation

The partial differential equations (PDE) – have functions
of several independent variables.
Example: time dependent Schrödinger equation for ψ(r, t)

5/26



Ordinary vs Partial differential equations

The ordinary differential equations (ODE) – have
functions of one only independent variable.
Example: stationary Schrödinger equation
The partial differential equations (PDE) – have functions
of several independent variables.
Example: time dependent Schrödinger equation for ψ(r, t)

5/26



Linear vs Non-linear differential equation

A linear differential equation – all of the derivatives
appear in linear form and none of the coefficient depends
on the dependent variable

a0x(t) + a1
dx

dt
+ a2

d2x

dt2
+ . . . = c

Example:

m
d2x(t)

dt2
= −kx(t)

6/26



Non-linear differential equation

A nonlinear differential equation – if the coefficients
depend on the dependent variable, OR the derivatives
appear in a nonlinear form:
Examples:

dx

dt

d2x

dt2
− x(t) = 0

t2
d2x

dt2
− x2(t) = 0

7/26



Order of the ODE

The order n of an ordinary differential equation is the
order of the highest derivative appearing in the differential
equation

t2
d2x(t)

dt2
− x(t) = 0 second order

t
d3x(t)

dt3
− dx(t)

dt
= 0 third order

8/26



General or partial solution

Example:
dx(t)

dt
− x(t) = 0

General Solution:
x(t) = Cet

Partial solutions:

x(t) = 2.0et

x(t) = 4.8et

9/26



General or partial solution

Example:
dx(t)

dt
− x(t) = 0

General Solution:
x(t) = Cet

Partial solutions:

x(t) = 2.0et

x(t) = 4.8et

9/26



General or partial solution

Example:
dx(t)

dt
− x(t) = 0

General Solution:
x(t) = Cet

Partial solutions:

x(t) = 2.0et

x(t) = 4.8et

9/26



Homogeneous and non-homogeneous ODE

A homogeneous equation: the each term contains either
the function or its derivative, but no other functions of
independent variables:

m
d2x(t)

dt2
− kx(t) = 0

A non-homogeneous equation: contains additional term
(source terms, forcing functions) which do not involve the
dependent variable:

m
d2x(t)

dt2
− kx(t) = F0 cos(ωt)

10/26



Homogeneous and non-homogeneous ODE

A homogeneous equation: the each term contains either
the function or its derivative, but no other functions of
independent variables:

m
d2x(t)

dt2
− kx(t) = 0

A non-homogeneous equation: contains additional term
(source terms, forcing functions) which do not involve the
dependent variable:

m
d2x(t)

dt2
− kx(t) = F0 cos(ωt)

10/26



Three major categories of ODE

Initial-value problems – involve time-dependent equations
with given initial conditions:

m
d2x(t)

dt2
− kx(t) = 0 x(t = 0) = x0,

dx

dt

∣∣∣∣
t=0

= v0

Boundary-value problems – involve differential equations
with specified boundary conditions:

m
d2x(t)

dt2
−kx(t) = 0 x(t = a) = xa, x(t = b) = xb

Eigenvalue problems – Involve solutions with selected
parameters in the equations

In reality, a problem may have more than just one of the
categories active.

11/26



Three major categories of ODE

Initial-value problems – involve time-dependent equations
with given initial conditions:

m
d2x(t)

dt2
− kx(t) = 0 x(t = 0) = x0,

dx

dt

∣∣∣∣
t=0

= v0

Boundary-value problems – involve differential equations
with specified boundary conditions:

m
d2x(t)

dt2
−kx(t) = 0 x(t = a) = xa, x(t = b) = xb

Eigenvalue problems – Involve solutions with selected
parameters in the equations

In reality, a problem may have more than just one of the
categories active.

11/26



Three major categories of ODE

Initial-value problems – involve time-dependent equations
with given initial conditions:

m
d2x(t)

dt2
− kx(t) = 0 x(t = 0) = x0,

dx

dt

∣∣∣∣
t=0

= v0

Boundary-value problems – involve differential equations
with specified boundary conditions:

m
d2x(t)

dt2
−kx(t) = 0 x(t = a) = xa, x(t = b) = xb

Eigenvalue problems – Involve solutions with selected
parameters in the equations

In reality, a problem may have more than just one of the
categories active.

11/26



Three major categories of ODE

Initial-value problems – involve time-dependent equations
with given initial conditions:

m
d2x(t)

dt2
− kx(t) = 0 x(t = 0) = x0,

dx

dt

∣∣∣∣
t=0

= v0

Boundary-value problems – involve differential equations
with specified boundary conditions:

m
d2x(t)

dt2
−kx(t) = 0 x(t = a) = xa, x(t = b) = xb

Eigenvalue problems – Involve solutions with selected
parameters in the equations

In reality, a problem may have more than just one of the
categories active.

11/26



Three general classifications in physics

Propagation problems – are initial value problems in open
domains where the initial values are marched forward in
time (or space) . The order may be one or greater. The
number of initial values must be equal to the order of the
differential equation.

Equilibrium problems – are boundary-value problems in
closed domains where boundary values are specified at
boundaries of the solution domain. The order of ODE
must be at least two.
Eigenproblems – are a special type of problems where the
solution exists only for special values of a parameter.

12/26



Three general classifications in physics

Propagation problems – are initial value problems in open
domains where the initial values are marched forward in
time (or space) . The order may be one or greater. The
number of initial values must be equal to the order of the
differential equation.
Equilibrium problems – are boundary-value problems in
closed domains where boundary values are specified at
boundaries of the solution domain. The order of ODE
must be at least two.

Eigenproblems – are a special type of problems where the
solution exists only for special values of a parameter.

12/26



Three general classifications in physics

Propagation problems – are initial value problems in open
domains where the initial values are marched forward in
time (or space) . The order may be one or greater. The
number of initial values must be equal to the order of the
differential equation.
Equilibrium problems – are boundary-value problems in
closed domains where boundary values are specified at
boundaries of the solution domain. The order of ODE
must be at least two.
Eigenproblems – are a special type of problems where the
solution exists only for special values of a parameter.

12/26



Converting nth order to n linear equations

Any nth order linear differential equation can be reduced to n
coupled first order differential equations. Example:

m
d2x(t)

dt2
− kx(t) = 0

is the same as:

dx(t)

dt
= v(t)

m
dv(t)

dt
= −kx(t)

13/26



Initial value problems

Initial values problems are solved by marching methods using
finite difference methods.

The objective of a finite difference method for solving an ODE
is to transform a calculus problem into an algebra problem by:

Discretizing the continuous physical domain into a
discrete finite difference grid
Approximating the exact derivatives in the ODE by
algebraic finite difference approximations (FDAs)
Substituting the FDA into ODE to obtain an algebraic
finite difference equation (FDE).
Solving the resulting algebraic FDE

14/26



Initial value problems

Initial values problems are solved by marching methods using
finite difference methods.
The objective of a finite difference method for solving an ODE
is to transform a calculus problem into an algebra problem by:

Discretizing the continuous physical domain into a
discrete finite difference grid
Approximating the exact derivatives in the ODE by
algebraic finite difference approximations (FDAs)
Substituting the FDA into ODE to obtain an algebraic
finite difference equation (FDE).
Solving the resulting algebraic FDE

14/26



Initial value problems

Initial values problems are solved by marching methods using
finite difference methods.
The objective of a finite difference method for solving an ODE
is to transform a calculus problem into an algebra problem by:

Discretizing the continuous physical domain into a
discrete finite difference grid

Approximating the exact derivatives in the ODE by
algebraic finite difference approximations (FDAs)
Substituting the FDA into ODE to obtain an algebraic
finite difference equation (FDE).
Solving the resulting algebraic FDE

14/26



Initial value problems

Initial values problems are solved by marching methods using
finite difference methods.
The objective of a finite difference method for solving an ODE
is to transform a calculus problem into an algebra problem by:

Discretizing the continuous physical domain into a
discrete finite difference grid
Approximating the exact derivatives in the ODE by
algebraic finite difference approximations (FDAs)

Substituting the FDA into ODE to obtain an algebraic
finite difference equation (FDE).
Solving the resulting algebraic FDE

14/26



Initial value problems

Initial values problems are solved by marching methods using
finite difference methods.
The objective of a finite difference method for solving an ODE
is to transform a calculus problem into an algebra problem by:

Discretizing the continuous physical domain into a
discrete finite difference grid
Approximating the exact derivatives in the ODE by
algebraic finite difference approximations (FDAs)
Substituting the FDA into ODE to obtain an algebraic
finite difference equation (FDE).

Solving the resulting algebraic FDE

14/26



Initial value problems

Initial values problems are solved by marching methods using
finite difference methods.
The objective of a finite difference method for solving an ODE
is to transform a calculus problem into an algebra problem by:

Discretizing the continuous physical domain into a
discrete finite difference grid
Approximating the exact derivatives in the ODE by
algebraic finite difference approximations (FDAs)
Substituting the FDA into ODE to obtain an algebraic
finite difference equation (FDE).
Solving the resulting algebraic FDE

14/26



Three groups of FDs for solving initial-value ODEs

Single point methods advance the solution from one grid
point to the next grid point using only the data at a single
grid point. (most significant method – 4th order
Runge-Kutta.

Extrapolation methods evaluate the solution at a grid
point for several values of grid size and extrapolate those
results to get for a more accurate solution.
Multipoint methods advance the solution form one grid
point to the next using the data at several known points
(4th order Adams-Bashforth-Moulton method).

15/26



Three groups of FDs for solving initial-value ODEs

Single point methods advance the solution from one grid
point to the next grid point using only the data at a single
grid point. (most significant method – 4th order
Runge-Kutta.
Extrapolation methods evaluate the solution at a grid
point for several values of grid size and extrapolate those
results to get for a more accurate solution.

Multipoint methods advance the solution form one grid
point to the next using the data at several known points
(4th order Adams-Bashforth-Moulton method).

15/26



Three groups of FDs for solving initial-value ODEs

Single point methods advance the solution from one grid
point to the next grid point using only the data at a single
grid point. (most significant method – 4th order
Runge-Kutta.
Extrapolation methods evaluate the solution at a grid
point for several values of grid size and extrapolate those
results to get for a more accurate solution.
Multipoint methods advance the solution form one grid
point to the next using the data at several known points
(4th order Adams-Bashforth-Moulton method).

15/26



Finite difference approximations

Using the Taylor series for xn+1 using the grid point n.

xn+1 = xn + x′|n∆t+
1

2
x′′n(∆t)2 + . . .+

1

m!
xm|n∆tm +Rm+1

Rm+1 =
1

(m+ 1)!
xm+1(τ)∆tm+1 t ≤ τ ≤ t+ ∆t

Solving for x′|n yields:

x′|n =
xn+1 − xn

∆t
− 1

2
x′′|n∆t− 1

6
x′′′|n(∆t)3

16/26



Finite difference approximations

Using the Taylor series for xn+1 using the grid point n.

xn+1 = xn + x′|n∆t+
1

2
x′′n(∆t)2 + . . .+

1

m!
xm|n∆tm +Rm+1

Rm+1 =
1

(m+ 1)!
xm+1(τ)∆tm+1 t ≤ τ ≤ t+ ∆t

Solving for x′|n yields:

x′|n =
xn+1 − xn

∆t
− 1

2
x′′|n∆t− 1

6
x′′′|n(∆t)3

16/26



Finite difference approximations

Using the Taylor series for xn+1 using the grid point n.

xn+1 = xn + x′|n∆t+
1

2
x′′n(∆t)2 + . . .+

1

m!
xm|n∆tm +Rm+1

Rm+1 =
1

(m+ 1)!
xm+1(τ)∆tm+1 t ≤ τ ≤ t+ ∆t

Solving for x′|n yields:

x′|n =
xn+1 − xn

∆t
− 1

2
x′′|n∆t− 1

6
x′′′|n(∆t)3

16/26



Finite difference approximations

Using the Taylor series for xn+1 using the grid point n.
a first - order finite difference approximation:

x′|n =
xn+1 − xn

∆t
O(∆t)

a first - order backward-difference approximation:

x′|n+1 =
xn+1 − xn

∆t
O(∆t)

A second-order centered difference approximation of x′ at
point n+ 1

2
:

x′|n+ 1
2

=
xn+1 − xn

∆t
O(∆t2)

17/26



Finite difference approximations

Using the Taylor series for xn+1 using the grid point n.
a first - order finite difference approximation:

x′|n =
xn+1 − xn

∆t
O(∆t)

a first - order backward-difference approximation:

x′|n+1 =
xn+1 − xn

∆t
O(∆t)

A second-order centered difference approximation of x′ at
point n+ 1

2
:

x′|n+ 1
2

=
xn+1 − xn

∆t
O(∆t2)

17/26



Finite difference approximations

Using the Taylor series for xn+1 using the grid point n.
a first - order finite difference approximation:

x′|n =
xn+1 − xn

∆t
O(∆t)

a first - order backward-difference approximation:

x′|n+1 =
xn+1 − xn

∆t
O(∆t)

A second-order centered difference approximation of x′ at
point n+ 1

2
:

x′|n+ 1
2

=
xn+1 − xn

∆t
O(∆t2)

17/26



Finite difference equations

Consider the general first-order initial-value ODE:

x′(t) = f(x, t) x(0) = x0

Use finite difference approximations:

x′|n =
xn+1 − xn

∆t
or x′|n+1 =

xn+1 − xn
∆t

Substitute into the ODE and solve for xn+1:

xn+1 = xn + f(xn, tn)∆t Explicit finite difference
xn+1 = xn + f(xn+1, tn+1)∆t Implicit finite difference

18/26



Finite difference equations

Consider the general first-order initial-value ODE:

x′(t) = f(x, t) x(0) = x0

Use finite difference approximations:

x′|n =
xn+1 − xn

∆t
or x′|n+1 =

xn+1 − xn
∆t

Substitute into the ODE and solve for xn+1:

xn+1 = xn + f(xn, tn)∆t Explicit finite difference
xn+1 = xn + f(xn+1, tn+1)∆t Implicit finite difference

18/26



Finite difference equations

Consider the general first-order initial-value ODE:

x′(t) = f(x, t) x(0) = x0

Use finite difference approximations:

x′|n =
xn+1 − xn

∆t
or x′|n+1 =

xn+1 − xn
∆t

Substitute into the ODE and solve for xn+1:

xn+1 = xn + f(xn, tn)∆t Explicit finite difference
xn+1 = xn + f(xn+1, tn+1)∆t Implicit finite difference

18/26



Errors – five types

Errors in the initial data

Algebraic errors
Truncation errors - cased by truncating the Taylor series
approximation (decreases with decreasing of the step size).
Round off errors - caused the finite word length (increases
as the step size decreases: more steps and small difference
between large numbers)
Inherited errors - the sum of all accumulated errors from
all previous steps (means that the initial condition for the
next is incorrect)

19/26



Errors – five types

Errors in the initial data
Algebraic errors

Truncation errors - cased by truncating the Taylor series
approximation (decreases with decreasing of the step size).
Round off errors - caused the finite word length (increases
as the step size decreases: more steps and small difference
between large numbers)
Inherited errors - the sum of all accumulated errors from
all previous steps (means that the initial condition for the
next is incorrect)

19/26



Errors – five types

Errors in the initial data
Algebraic errors
Truncation errors - cased by truncating the Taylor series
approximation (decreases with decreasing of the step size).

Round off errors - caused the finite word length (increases
as the step size decreases: more steps and small difference
between large numbers)
Inherited errors - the sum of all accumulated errors from
all previous steps (means that the initial condition for the
next is incorrect)

19/26



Errors – five types

Errors in the initial data
Algebraic errors
Truncation errors - cased by truncating the Taylor series
approximation (decreases with decreasing of the step size).
Round off errors - caused the finite word length (increases
as the step size decreases: more steps and small difference
between large numbers)

Inherited errors - the sum of all accumulated errors from
all previous steps (means that the initial condition for the
next is incorrect)

19/26



Errors – five types

Errors in the initial data
Algebraic errors
Truncation errors - cased by truncating the Taylor series
approximation (decreases with decreasing of the step size).
Round off errors - caused the finite word length (increases
as the step size decreases: more steps and small difference
between large numbers)
Inherited errors - the sum of all accumulated errors from
all previous steps (means that the initial condition for the
next is incorrect)

19/26



The explicit Euler method for ODE

The explicit Euler method – first-order finite difference method
for solving initial-value problem for ODE

Lets consider a general first-order ODE:

dx

dt
= f(x, t) with x(t0) = x0

Explicit finite difference (first order):

x′|n =
xn+1 − xn

∆t

then
xn+1 = xn + f(xn, tn)∆t

20/26



The explicit Euler method for ODE

The explicit Euler method – first-order finite difference method
for solving initial-value problem for ODE
Lets consider a general first-order ODE:

dx

dt
= f(x, t) with x(t0) = x0

Explicit finite difference (first order):

x′|n =
xn+1 − xn

∆t

then
xn+1 = xn + f(xn, tn)∆t

20/26



The explicit Euler method for ODE

The explicit Euler method – first-order finite difference method
for solving initial-value problem for ODE
Lets consider a general first-order ODE:

dx

dt
= f(x, t) with x(t0) = x0

Explicit finite difference (first order):

x′|n =
xn+1 − xn

∆t

then
xn+1 = xn + f(xn, tn)∆t

20/26



The explicit Euler method for ODE

Explicit (since f(tn, xn) does not depend on xn+1 )

Requires only one known point (singe point method)
The local truncation error is O(∆t2)

The global error accumulated after n steps O(∆t)

Problem: the method is conditionally stable for
∆t ≤ ∆tcr.

21/26



The explicit Euler method for ODE

Explicit (since f(tn, xn) does not depend on xn+1 )
Requires only one known point (singe point method)

The local truncation error is O(∆t2)

The global error accumulated after n steps O(∆t)

Problem: the method is conditionally stable for
∆t ≤ ∆tcr.

21/26



The explicit Euler method for ODE

Explicit (since f(tn, xn) does not depend on xn+1 )
Requires only one known point (singe point method)
The local truncation error is O(∆t2)

The global error accumulated after n steps O(∆t)

Problem: the method is conditionally stable for
∆t ≤ ∆tcr.

21/26



The explicit Euler method for ODE

Explicit (since f(tn, xn) does not depend on xn+1 )
Requires only one known point (singe point method)
The local truncation error is O(∆t2)

The global error accumulated after n steps O(∆t)

Problem: the method is conditionally stable for
∆t ≤ ∆tcr.

21/26



The explicit Euler method for ODE

Explicit (since f(tn, xn) does not depend on xn+1 )
Requires only one known point (singe point method)
The local truncation error is O(∆t2)

The global error accumulated after n steps O(∆t)

Problem: the method is conditionally stable for
∆t ≤ ∆tcr.

21/26



The implicit Euler method for ODE

The implicit Euler method – first-order finite difference
method for solving initial-value problem for ODE

Lets us chose n+ 1 as the base point for:

dx

dt
= f(x, t) with x(t0) = x0

Implicit finite difference (first order):

x′|n+1 =
xn+1 − xn

∆t

then
xn+1 = xn + f(xn+1, tn+1)∆t

22/26



The implicit Euler method for ODE

The implicit Euler method – first-order finite difference
method for solving initial-value problem for ODE
Lets us chose n+ 1 as the base point for:

dx

dt
= f(x, t) with x(t0) = x0

Implicit finite difference (first order):

x′|n+1 =
xn+1 − xn

∆t

then
xn+1 = xn + f(xn+1, tn+1)∆t

22/26



The implicit Euler method for ODE

The implicit Euler method – first-order finite difference
method for solving initial-value problem for ODE
Lets us chose n+ 1 as the base point for:

dx

dt
= f(x, t) with x(t0) = x0

Implicit finite difference (first order):

x′|n+1 =
xn+1 − xn

∆t

then
xn+1 = xn + f(xn+1, tn+1)∆t

22/26



The implicit Euler method for ODE

Implicit (since f(xn+1, tn+1) does depend on xn+1 )

The implicit Euler is unconditionally stable.
However, if f(x, t) is non-linear, then we need to use one
of the methods for solving non-linear equations.

23/26



The implicit Euler method for ODE

Implicit (since f(xn+1, tn+1) does depend on xn+1 )
The implicit Euler is unconditionally stable.

However, if f(x, t) is non-linear, then we need to use one
of the methods for solving non-linear equations.

23/26



The implicit Euler method for ODE

Implicit (since f(xn+1, tn+1) does depend on xn+1 )
The implicit Euler is unconditionally stable.
However, if f(x, t) is non-linear, then we need to use one
of the methods for solving non-linear equations.

23/26



Stability of Euler method

Consider the ’linear test equation’:

dx(t)

dt
= λx(t)

where λ ∈ C and x(t = 0) = x0 6= 0.
The exact solution of this equation is:

x(t) = x0e
λt

For <(λ) < 0, then the solution x(t→∞)→ 0.

24/26



Stability of explicit Euler equation

xn+1 = xn + λ δt xn

xn+1 = (1 + λ δt)nx0

So for the case when <(λ) < 0:

|1 + λ δt| < 1

If we restrict that λ ∈ R:
−1 < 1 + λ δt <1

−2 < λ δt <0

0 < δt < t− 2

λ
(as δt > 0 and λ < 0).
The condition of stability is:

δt < −2

λ

25/26



Stability of explicit Euler equation

xn+1 = xn + λ δt xn

xn+1 = (1 + λ δt)nx0

So for the case when <(λ) < 0:

|1 + λ δt| < 1

If we restrict that λ ∈ R:
−1 < 1 + λ δt <1

−2 < λ δt <0

0 < δt < t− 2

λ
(as δt > 0 and λ < 0).

The condition of stability is:

δt < −2

λ

25/26



Stability of explicit Euler equation

xn+1 = xn + λ δt xn

xn+1 = (1 + λ δt)nx0

So for the case when <(λ) < 0:

|1 + λ δt| < 1

If we restrict that λ ∈ R:
−1 < 1 + λ δt <1

−2 < λ δt <0

0 < δt < t− 2

λ
(as δt > 0 and λ < 0).
The condition of stability is:

δt < −2

λ
25/26



Stability of implicit Euler equation

xn+1 = xn + λ δt xn+1

xn+1 =
1

1− λ δt
xn

xn+1 =

(
1

1− λ δt

)n

x0

So for the case when <(λ) < 0:

| 1

1− λ δt
| < 1

If we restrict that λ ∈ R:
|1− λ δt| > 1

1− λ δt > 1 or 1− λ δt < −1

λ δt < 0 or λ δt > 2

As δt > 0 and λ < 0, the condition of stability is always
satified. Thus, implicit Euler method is unconditionally stable.

26/26



Stability of implicit Euler equation

xn+1 = xn + λ δt xn+1

xn+1 =
1

1− λ δt
xn

xn+1 =

(
1

1− λ δt

)n

x0

So for the case when <(λ) < 0:

| 1

1− λ δt
| < 1

If we restrict that λ ∈ R:
|1− λ δt| > 1

1− λ δt > 1 or 1− λ δt < −1

λ δt < 0 or λ δt > 2

As δt > 0 and λ < 0, the condition of stability is always
satified. Thus, implicit Euler method is unconditionally stable.

26/26



Stability of implicit Euler equation

xn+1 = xn + λ δt xn+1

xn+1 =
1

1− λ δt
xn

xn+1 =

(
1

1− λ δt

)n

x0

So for the case when <(λ) < 0:

| 1

1− λ δt
| < 1

If we restrict that λ ∈ R:
|1− λ δt| > 1

1− λ δt > 1 or 1− λ δt < −1

λ δt < 0 or λ δt > 2

As δt > 0 and λ < 0, the condition of stability is always
satified. Thus, implicit Euler method is unconditionally stable.

26/26


