Ordinary Differential Equations

m Types of Ordinary differential equations.
m Euler's method.

1/26



Differential equations

m Most fundamental and basic equations in physics as well
as frequently occurring problems appear as differential
equations.

2/26



Differential equations

m Most fundamental and basic equations in physics as well
as frequently occurring problems appear as differential
equations.

m Perhaps the most common use of computers in physics is
for the solution of differential equations!

2/26



Differential equations

m Most fundamental and basic equations in physics as well
as frequently occurring problems appear as differential
equations.

m Perhaps the most common use of computers in physics is
for the solution of differential equations!

m Examples :
d*x(t)
mstg = — kz(t)
L O0Y(x,t) 1 0%(x,1)
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Classification of differential equations

m Ordinary vs Partial differential equations.
m Linear vs non-linear differential equations.
m Homogeneous vs non-homogeneous differential equations.

m General solution vs particular solution of the differential
equation.

m Initial value problem vs boundary value problem vs
eigenvalue problem.
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Simple Harmonic Oscillator

d*z(t)

z(t =0) = xg
dx B
t|,_, Yo

is initial value problem for the second order ordinary linear
homogeneous differential equation

4/26



Ordinary vs Partial differential equations

m The ordinary differential equations (ODE) — have
functions of one only independent variable.
Example: stationary Schrédinger equation
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Ordinary vs Partial differential equations

m The ordinary differential equations (ODE) — have
functions of one only independent variable.
Example: stationary Schrédinger equation

m The partial differential equations (PDE) — have functions
of several independent variables.
Example: time dependent Schrédinger equation for ¢ (r, t)
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Linear vs Non-linear differential equation

m A linear differential equation — all of the derivatives
appear in linear form and none of the coefficient depends
on the dependent variable

a:z:(t)+ad—x+ad2—x+ =c
’ Yar " Paer T
Example:

d?z(t

m 2(t) _ kx(t)
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Non-linear differential equation

m A nonlinear differential equation — if the coefficients
depend on the dependent variable, OR the derivatives
appear in a nonlinear form:

Examples:
dx d*x
Sl () =0
a iz~ W
d2
28T 2y =0

dt?
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Order of the ODE

m The order n of an ordinary differential equation is the
order of the highest derivative appearing in the differential
equation

L dPx(t)
dt?

d3x(t) _da(t)
dat3 dt

—z(t) =0 second order

t = (0 third order
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General or partial solution

Example:
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General or partial solution

Example:

m General Solution:
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General or partial solution

Example:
dx(t)
—2(t) =0
m General Solution:
z(t) = Ce’
m Partial solutions:
z(t) = 2.0¢"

z(t) = 4.8¢"
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Homogeneous and non-homogeneous ODE

m A homogeneous equation: the each term contains either
the function or its derivative, but no other functions of
independent variables:

d*z(t)
dt?

—kx(t) =0
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Homogeneous and non-homogeneous ODE

m A homogeneous equation: the each term contains either
the function or its derivative, but no other functions of
independent variables:

d*z(t)
dt?

—kx(t) =0

m A non-homogeneous equation: contains additional term
(source terms, forcing functions) which do not involve the
dependent variable:

d?x(t)
dt?

— kx(t) = Fy cos(wt)

10/26



Three major categories of ODE

m Initial-value problems — involve time-dependent equations
with given initial conditions:

d*x(t) dx
M= = kx(t) =0 z(t = 0) = x, o

= ’UO
t=0
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Three major categories of ODE

m Initial-value problems — involve time-dependent equations
with given initial conditions:

d*x(t dz
dtg ) _ kx(t) =0 z(t = 0) = xo, o =

t=0

m Boundary-value problems — involve differential equations
with specified boundary conditions:

d*z(t)
dt?

m Eigenvalue problems — Involve solutions with selected
parameters in the equations

—kx(t) =0 z(t = a) = 4, x(t =b) =z

In reality, a problem may have more than just one of the
categories active.
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Three general classifications in physics

m Propagation problems — are initial value problems in open
domains where the initial values are marched forward in
time (or space) . The order may be one or greater. The
number of initial values must be equal to the order of the
differential equation.
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Three general classifications in physics

m Propagation problems — are initial value problems in open
domains where the initial values are marched forward in
time (or space) . The order may be one or greater. The
number of initial values must be equal to the order of the
differential equation.

m Equilibrium problems — are boundary-value problems in
closed domains where boundary values are specified at
boundaries of the solution domain. The order of ODE
must be at least two.

m Eigenproblems — are a special type of problems where the
solution exists only for special values of a parameter.
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Converting n'" order to n linear equations

Any n'" order linear differential equation can be reduced to n
coupled first order differential equations. Example:

d*x(t)
M=y~ kx(t) =0
is the same as:
do(t)
dt v(t)
dv(t)
e —kx(t)
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Initial value problems

Initial values problems are solved by marching methods using
finite difference methods.
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Initial value problems

Initial values problems are solved by marching methods using

finite difference methods.
The objective of a finite difference method for solving an ODE

is to transform a calculus problem into an algebra problem by:

m Discretizing the continuous physical domain into a
discrete finite difference grid

m Approximating the exact derivatives in the ODE by
algebraic finite difference approximations (FDAs)

m Substituting the FDA into ODE to obtain an algebraic
finite difference equation (FDE).
m Solving the resulting algebraic FDE
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Three groups of FDs for solving initial-value ODEs

m Single point methods advance the solution from one grid
point to the next grid point using only the data at a single
grid point. (most significant method — 4th order
Runge-Kutta.
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Three groups of FDs for solving initial-value ODEs

m Single point methods advance the solution from one grid
point to the next grid point using only the data at a single
grid point. (most significant method — 4th order
Runge-Kutta.

m Extrapolation methods evaluate the solution at a grid
point for several values of grid size and extrapolate those
results to get for a more accurate solution.

m Multipoint methods advance the solution form one grid
point to the next using the data at several known points
(4th order Adams-Bashforth-Moulton method).
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Finite difference approximations

Using the Taylor series for x,, 1 using the grid point n.
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Finite difference approximations

Using the Taylor series for x,, 1 using the grid point n.

1 1

Tpi1 = Tp + 2, At + §xg(At)2 +o o —a ™A+ R™H
m:

1

m—+1 _
R (m+1)!

" (DA < T <t 4+ At
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Finite difference approximations

Using the Taylor series for x,, 1 using the grid point n.

1 1

Tpi1 = Tp + 2, At + §xg(At)2 +o o —a ™A+ R™H
m:

1

m—+1
R = (m+1)!

C(Im+1<7')Atm+1 tS T St—i—At

Solving for 2’|, yields:

’ Tn4+1 — Tn 1 " 1 " 3
= Tt T 2 At — ) (A
3 At 2I| 6x|( )
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Finite difference approximations

Using the Taylor series for x,, 1 using the grid point n.
m a first - order finite difference approximation:

v, = T O(AY)
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Finite difference approximations
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m a first - order finite difference approximation:

v, = T O(AY)

m a first - order backward-difference approximation:

Tyl — T
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Finite difference approximations

Using the Taylor series for x,, 1 using the grid point n.
m a first - order finite difference approximation:

v, = T O(AY)

m a first - order backward-difference approximation:

/ T — Tp
g1 = HT O(At)

m A second-order centered difference approximation of x’ at
point n + 3:

/ Lp+1 — T 2
=—— O(At
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Finite difference equations

Consider the general first-order initial-value ODE:

7'(t) = f(z,t) x(0) =z
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Finite difference equations

Consider the general first-order initial-value ODE:
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Use finite difference approximations:
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Finite difference equations

Consider the general first-order initial-value ODE:
2(t) = f(z,t) x(0) =z
Use finite difference approximations:

/| _ anrl — Tn or xn+1 — Tn

/ —
Tln At Tl = =4,

Substitute into the ODE and solve for x,,,1:

Tps1 = Tp + f(zn, ty) Al Explicit finite difference
Tpt1 = Tp + [(Tpa1, tner) AL Implicit finite difference
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Errors — five types

m Errors in the initial data
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Errors — five types

m Errors in the initial data
m Algebraic errors

m Truncation errors - cased by truncating the Taylor series
approximation (decreases with decreasing of the step size).

m Round off errors - caused the finite word length (increases
as the step size decreases: more steps and small difference
between large numbers)

m Inherited errors - the sum of all accumulated errors from
all previous steps (means that the initial condition for the
next is incorrect)
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The explicit Euler method for ODE

The explicit Euler method — first-order finite difference method
for solving initial-value problem for ODE

20/26



The explicit Euler method for ODE

The explicit Euler method — first-order finite difference method
for solving initial-value problem for ODE
Lets consider a general first-order ODE:

dx

5= flz,t) with  x(ty) = zo

20/26



The explicit Euler method for ODE

The explicit Euler method — first-order finite difference method
for solving initial-value problem for ODE
Lets consider a general first-order ODE:

dx

5= flz,t) with  x(ty) = zo

Explicit finite difference (first order):

.CB,’ o Tnt1 — Tn

At
then
Tpi1 = T + [(Tn, tn) At
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The explicit Euler method for ODE

m Explicit (since f(t,,,) does not depend on 1 )
m Requires only one known point (singe point method)
m The local truncation error is O(At?)

m The global error accumulated after n steps O(At)

m Problem: the method is conditionally stable for
At < At,,.
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The implicit Euler method for ODE

The implicit Euler method — first-order finite difference
method for solving initial-value problem for ODE
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The implicit Euler method for ODE

The implicit Euler method — first-order finite difference
method for solving initial-value problem for ODE
Lets us chose n + 1 as the base point for:

dx

5= flz,t) with  x(ty) = zo
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The implicit Euler method for ODE

The implicit Euler method — first-order finite difference
method for solving initial-value problem for ODE
Lets us chose n + 1 as the base point for:

dx

5= flz,t) with  x(ty) = zo

Implicit finite difference (first order):

Lp+1 — Tn

At

x/‘n+1 -

then
Tny1 = Tn + f(Tng1, tag1) At
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The implicit Euler method for ODE

m Implicit (since f(zp41,tn11) does depend on 2,41 )
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The implicit Euler method for ODE

m Implicit (since f(zp41,tn11) does depend on 2,41 )
m The implicit Euler is unconditionally stable.

m However, if f(x,t) is non-linear, then we need to use one
of the methods for solving non-linear equations.
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Stability of Euler method

Consider the 'linear test equation’:
dx(t)
dt

where A € C and z(t = 0) = xy # 0.
The exact solution of this equation is:

= Az (t)

z(t) = zoe

For R(\) < 0, then the solution z(t — c0) — 0.
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Stability of explicit Euler equation

Tpil = Tp + A0t T,
Tpi1 = (L4 Xdt) "z
So for the case when () < 0:
1+ At <1
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Stability of explicit Euler equation

Tpt1 = Ty + A0t T,
Tpi1 = (L 4+ X6t)"xg
So for the case when () < 0:
1+ At <1
If we restrict that A € R:

—1<1+Adt<l
—2 < \dt <0
2
O<ot<t——
< < h\
(as 0t > 0 and X\ < 0).
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Stability of explicit Euler equation

Tpil = Tp + A0t T,
Tpi1 = (L 4+ X6t)"xg
So for the case when () < 0:
1+ At <1
If we restrict that A € R:
—1<14+A0t<1
—2 < At <0
2
0<dt<t— 3

(as 0t > 0 and X\ < 0).
The condition of stability is:

9
5t < 2
<7

25/26



Stability of implicit Euler equation

Tpil = Tp + A0t X,

1
Tpy1 = 1— Aétxn

1 n
Tnt1 = (—1 — )\525) Lo

So for the case when R(\) < 0:
| 1
1— Aot

| <1

26/26



Stability of implicit Euler equation

Tpil = Tp + A0t X,

1
O I v T

1 n
Tnt1 = (—1 — )\525) Lo

So for the case when R(\) < 0:

1
_— 1
T <
If we restrict that )\ € R:
1 —Adt| >1

1—-Adt>1lorl— Aot < —1
Aot < 0or Aot > 2
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Stability of implicit Euler equation

Tpil = Tp + A0t X,

1
Tl = T

1 n
Tnt1 = (—1 — )\525) Lo

So for the case when R(\) < 0:

1
_— 1
T <
If we restrict that )\ € R:
1 —Adt| >1

1—Adt>1orl—Mdt< —1
Aot < 0or Aot > 2

As 6t > 0 and X\ < 0, the condition of stability is always

satified. Thus, implicit Euler method is unconditionally stable.
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