

- Types of Ordinary differential equations.
- Euler's method.

- Most fundamental and basic equations in physics as well as frequently occurring problems appear as differential equations.

- Most fundamental and basic equations in physics as well as frequently occurring problems appear as differential equations.
- Perhaps the most common use of computers in physics is for the solution of differential equations!

- Most fundamental and basic equations in physics as well as frequently occurring problems appear as differential equations.
- Perhaps the most common use of computers in physics is for the solution of differential equations!
- Examples :

$$m \frac{d^2x(t)}{dt^2} = -kx(t)$$

$$i\hbar \frac{\partial \psi(x, t)}{\partial t} = -\frac{1}{2m} \frac{\partial^2 \psi(x, t)}{\partial x^2} + V(x)\psi(x, t)$$

Classification of differential equations

- Ordinary vs Partial differential equations.

Classification of differential equations

- Ordinary vs Partial differential equations.
- Linear vs non-linear differential equations.

Classification of differential equations

- Ordinary vs Partial differential equations.
- Linear vs non-linear differential equations.
- Homogeneous vs non-homogeneous differential equations.

- Ordinary vs Partial differential equations.
- Linear vs non-linear differential equations.
- Homogeneous vs non-homogeneous differential equations.
- General solution vs particular solution of the differential equation.

- Ordinary vs Partial differential equations.
- Linear vs non-linear differential equations.
- Homogeneous vs non-homogeneous differential equations.
- General solution vs particular solution of the differential equation.
- Initial value problem vs boundary value problem vs eigenvalue problem.

Simple Harmonic Oscillator

$$m \frac{d^2x(t)}{dt^2} = -kx(t)$$
$$x(t = 0) = x_0$$

$$\left. \frac{dx}{dt} \right|_{t=0} = v_0$$

is initial value problem for the second order ordinary linear
homogeneous differential equation

- The ordinary differential equations (ODE) – have functions of one only independent variable.
Example: stationary Schrödinger equation

- The ordinary differential equations (ODE) – have functions of one only independent variable.
Example: stationary Schrödinger equation
- The partial differential equations (PDE) – have functions of several independent variables.
Example: time dependent Schrödinger equation for $\psi(\mathbf{r}, t)$

- A linear differential equation – all of the derivatives appear in linear form and none of the coefficient depends on the dependent variable

$$a_0x(t) + a_1\frac{dx}{dt} + a_2\frac{d^2x}{dt^2} + \dots = c$$

Example:

$$m\frac{d^2x(t)}{dt^2} = -kx(t)$$

- A nonlinear differential equation – if the coefficients depend on the dependent variable, OR the derivatives appear in a nonlinear form:

Examples:

$$\frac{dx}{dt} \frac{d^2x}{dt^2} - x(t) = 0$$

$$t^2 \frac{d^2x}{dt^2} - x^2(t) = 0$$

Order of the ODE

- The order n of an ordinary differential equation is the order of the highest derivative appearing in the differential equation

$$t^2 \frac{d^2 x(t)}{dt^2} - x(t) = 0 \quad \text{second order}$$

$$t \frac{d^3 x(t)}{dt^3} - \frac{dx(t)}{dt} = 0 \quad \text{third order}$$

Example:

$$\frac{dx(t)}{dt} - x(t) = 0$$

General or partial solution

Example:

$$\frac{dx(t)}{dt} - x(t) = 0$$

■ General Solution:

$$x(t) = Ce^t$$

General or partial solution

Example:

$$\frac{dx(t)}{dt} - x(t) = 0$$

■ General Solution:

$$x(t) = Ce^t$$

■ Partial solutions:

$$x(t) = 2.0e^t$$

$$x(t) = 4.8e^t$$

- A homogeneous equation: the each term contains either the function or its derivative, but no other functions of independent variables:

$$m \frac{d^2x(t)}{dt^2} - kx(t) = 0$$

- A homogeneous equation: the each term contains either the function or its derivative, but no other functions of independent variables:

$$m \frac{d^2x(t)}{dt^2} - kx(t) = 0$$

- A non-homogeneous equation: contains additional term (source terms, forcing functions) which do not involve the dependent variable:

$$m \frac{d^2x(t)}{dt^2} - kx(t) = F_0 \cos(\omega t)$$

Three major categories of ODE

- Initial-value problems – involve time-dependent equations with given initial conditions:

$$m \frac{d^2x(t)}{dt^2} - kx(t) = 0 \quad x(t=0) = x_0, \quad \left. \frac{dx}{dt} \right|_{t=0} = v_0$$

Three major categories of ODE

- Initial-value problems – involve time-dependent equations with given initial conditions:

$$m \frac{d^2x(t)}{dt^2} - kx(t) = 0 \quad x(t=0) = x_0, \quad \left. \frac{dx}{dt} \right|_{t=0} = v_0$$

- Boundary-value problems – involve differential equations with specified boundary conditions:

$$m \frac{d^2x(t)}{dt^2} - kx(t) = 0 \quad x(t=a) = x_a, \quad x(t=b) = x_b$$

Three major categories of ODE

- Initial-value problems – involve time-dependent equations with given initial conditions:

$$m \frac{d^2x(t)}{dt^2} - kx(t) = 0 \quad x(t=0) = x_0, \quad \left. \frac{dx}{dt} \right|_{t=0} = v_0$$

- Boundary-value problems – involve differential equations with specified boundary conditions:

$$m \frac{d^2x(t)}{dt^2} - kx(t) = 0 \quad x(t=a) = x_a, \quad x(t=b) = x_b$$

- Eigenvalue problems – Involve solutions with selected parameters in the equations

Three major categories of ODE

- Initial-value problems – involve time-dependent equations with given initial conditions:

$$m \frac{d^2x(t)}{dt^2} - kx(t) = 0 \quad x(t=0) = x_0, \quad \left. \frac{dx}{dt} \right|_{t=0} = v_0$$

- Boundary-value problems – involve differential equations with specified boundary conditions:

$$m \frac{d^2x(t)}{dt^2} - kx(t) = 0 \quad x(t=a) = x_a, \quad x(t=b) = x_b$$

- Eigenvalue problems – Involve solutions with selected parameters in the equations

In reality, a problem may have more than just one of the categories active.

Three general classifications in physics

- Propagation problems – are initial value problems in open domains where the initial values are marched forward in time (or space) . The order may be one or greater. The number of initial values must be equal to the order of the differential equation.

Three general classifications in physics

- Propagation problems – are initial value problems in open domains where the initial values are marched forward in time (or space) . The order may be one or greater. The number of initial values must be equal to the order of the differential equation.
- Equilibrium problems – are boundary-value problems in closed domains where boundary values are specified at boundaries of the solution domain. The order of ODE must be at least two.

Three general classifications in physics

- Propagation problems – are initial value problems in open domains where the initial values are marched forward in time (or space) . The order may be one or greater. The number of initial values must be equal to the order of the differential equation.
- Equilibrium problems – are boundary-value problems in closed domains where boundary values are specified at boundaries of the solution domain. The order of ODE must be at least two.
- Eigenproblems – are a special type of problems where the solution exists only for special values of a parameter.

Converting n^{th} order to n linear equations

Any n^{th} order linear differential equation can be reduced to n coupled first order differential equations. Example:

$$m \frac{d^2x(t)}{dt^2} - kx(t) = 0$$

is the same as:

$$\frac{dx(t)}{dt} = v(t)$$

$$m \frac{dv(t)}{dt} = -kx(t)$$

Initial values problems are solved by marching methods using finite difference methods.

Initial values problems are solved by marching methods using finite difference methods.

The objective of a finite difference method for solving an ODE is to transform a calculus problem into an algebra problem by:

Initial values problems are solved by marching methods using finite difference methods.

The objective of a finite difference method for solving an ODE is to transform a calculus problem into an algebra problem by:

- Discretizing the continuous physical domain into a discrete finite difference grid

Initial values problems are solved by marching methods using finite difference methods.

The objective of a finite difference method for solving an ODE is to transform a calculus problem into an algebra problem by:

- Discretizing the continuous physical domain into a discrete finite difference grid
- Approximating the exact derivatives in the ODE by algebraic finite difference approximations (FDAs)

Initial values problems are solved by marching methods using finite difference methods.

The objective of a finite difference method for solving an ODE is to transform a calculus problem into an algebra problem by:

- Discretizing the continuous physical domain into a discrete finite difference grid
- Approximating the exact derivatives in the ODE by algebraic finite difference approximations (FDAs)
- Substituting the FDA into ODE to obtain an algebraic finite difference equation (FDE).

Initial values problems are solved by marching methods using finite difference methods.

The objective of a finite difference method for solving an ODE is to transform a calculus problem into an algebra problem by:

- Discretizing the continuous physical domain into a discrete finite difference grid
- Approximating the exact derivatives in the ODE by algebraic finite difference approximations (FDAs)
- Substituting the FDA into ODE to obtain an algebraic finite difference equation (FDE).
- Solving the resulting algebraic FDE

- Single point methods advance the solution from one grid point to the next grid point using only the data at a single grid point. (most significant method – 4th order Runge-Kutta.

- Single point methods advance the solution from one grid point to the next grid point using only the data at a single grid point. (most significant method – 4th order Runge-Kutta.)
- Extrapolation methods evaluate the solution at a grid point for several values of grid size and extrapolate those results to get for a more accurate solution.

- Single point methods advance the solution from one grid point to the next grid point using only the data at a single grid point. (most significant method – 4th order Runge-Kutta).
- Extrapolation methods evaluate the solution at a grid point for several values of grid size and extrapolate those results to get for a more accurate solution.
- Multipoint methods advance the solution from one grid point to the next using the data at several known points (4th order Adams-Basforth-Moulton method).

Using the Taylor series for x_{n+1} using the grid point n .

Using the Taylor series for x_{n+1} using the grid point n .

$$x_{n+1} = x_n + x'|_n \Delta t + \frac{1}{2} x''|_n (\Delta t)^2 + \dots + \frac{1}{m!} x^m|_n \Delta t^m + R^{m+1}$$

$$R^{m+1} = \frac{1}{(m+1)!} x^{m+1}(\tau) \Delta t^{m+1} \quad t \leq \tau \leq t + \Delta t$$

Using the Taylor series for x_{n+1} using the grid point n .

$$x_{n+1} = x_n + x'|_n \Delta t + \frac{1}{2} x''|_n (\Delta t)^2 + \dots + \frac{1}{m!} x^m|_n \Delta t^m + R^{m+1}$$

$$R^{m+1} = \frac{1}{(m+1)!} x^{m+1}(\tau) \Delta t^{m+1} \quad t \leq \tau \leq t + \Delta t$$

Solving for $x'|_n$ yields:

$$x'|_n = \frac{x_{n+1} - x_n}{\Delta t} - \frac{1}{2} x''|_n \Delta t - \frac{1}{6} x'''|_n (\Delta t)^3$$

Using the Taylor series for x_{n+1} using the grid point n .

- a first - order finite difference approximation:

$$x'|_n = \frac{x_{n+1} - x_n}{\Delta t} \quad \mathcal{O}(\Delta t)$$

Using the Taylor series for x_{n+1} using the grid point n .

- a first - order finite difference approximation:

$$x'|_n = \frac{x_{n+1} - x_n}{\Delta t} \quad \mathcal{O}(\Delta t)$$

- a first - order backward-difference approximation:

$$x'|_{n+1} = \frac{x_{n+1} - x_n}{\Delta t} \quad \mathcal{O}(\Delta t)$$

Using the Taylor series for x_{n+1} using the grid point n .

- a first - order finite difference approximation:

$$x'|_n = \frac{x_{n+1} - x_n}{\Delta t} \quad \mathcal{O}(\Delta t)$$

- a first - order backward-difference approximation:

$$x'|_{n+1} = \frac{x_{n+1} - x_n}{\Delta t} \quad \mathcal{O}(\Delta t)$$

- A second-order centered difference approximation of x' at point $n + \frac{1}{2}$:

$$x'|_{n+\frac{1}{2}} = \frac{x_{n+1} - x_n}{\Delta t} \quad \mathcal{O}(\Delta t^2)$$

Consider the general first-order initial-value ODE:

$$x'(t) = f(x, t) \quad x(0) = x_0$$

Consider the general first-order initial-value ODE:

$$x'(t) = f(x, t) \quad x(0) = x_0$$

Use finite difference approximations:

$$x'|_n = \frac{x_{n+1} - x_n}{\Delta t} \quad \text{or} \quad x'|_{n+1} = \frac{x_{n+1} - x_n}{\Delta t}$$

Finite difference equations

Consider the general first-order initial-value ODE:

$$x'(t) = f(x, t) \quad x(0) = x_0$$

Use finite difference approximations:

$$x'|_n = \frac{x_{n+1} - x_n}{\Delta t} \quad \text{or} \quad x'|_{n+1} = \frac{x_{n+1} - x_n}{\Delta t}$$

Substitute into the ODE and solve for x_{n+1} :

$$x_{n+1} = x_n + f(x_n, t_n)\Delta t \quad \text{Explicit finite difference}$$

$$x_{n+1} = x_n + f(x_{n+1}, t_{n+1})\Delta t \quad \text{Implicit finite difference}$$

- Errors in the initial data

Errors – five types

- Errors in the initial data
- Algebraic errors

- Errors in the initial data
- Algebraic errors
- Truncation errors - cased by truncating the Taylor series approximation (decreases with decreasing of the step size).

- Errors in the initial data
- Algebraic errors
- Truncation errors - cased by truncating the Taylor series approximation (decreases with decreasing of the step size).
- Round off errors - caused the finite word length (increases as the step size decreases: more steps and small difference between large numbers)

- Errors in the initial data
- Algebraic errors
- Truncation errors - cased by truncating the Taylor series approximation (decreases with decreasing of the step size).
- Round off errors - caused the finite word length (increases as the step size decreases: more steps and small difference between large numbers)
- Inherited errors - the sum of all accumulated errors from all previous steps (means that the initial condition for the next is incorrect)

The explicit Euler method for ODE

The explicit Euler method – first-order finite difference method for solving initial-value problem for ODE

The explicit Euler method for ODE

The explicit Euler method – first-order finite difference method for solving initial-value problem for ODE

Lets consider a general first-order ODE:

$$\frac{dx}{dt} = f(x, t) \quad \text{with} \quad x(t_0) = x_0$$

The explicit Euler method for ODE

The explicit Euler method – first-order finite difference method for solving initial-value problem for ODE

Lets consider a general first-order ODE:

$$\frac{dx}{dt} = f(x, t) \quad \text{with} \quad x(t_0) = x_0$$

Explicit finite difference (first order):

$$x'|_n = \frac{x_{n+1} - x_n}{\Delta t}$$

then

$$x_{n+1} = x_n + f(x_n, t_n) \Delta t$$

The explicit Euler method for ODE

- Explicit (since $f(t_n, x_n)$ does not depend on x_{n+1})

The explicit Euler method for ODE

- Explicit (since $f(t_n, x_n)$ does not depend on x_{n+1})
- Requires only one known point (single point method)

The explicit Euler method for ODE

- Explicit (since $f(t_n, x_n)$ does not depend on x_{n+1})
- Requires only one known point (single point method)
- The local truncation error is $\mathcal{O}(\Delta t^2)$

The explicit Euler method for ODE

- Explicit (since $f(t_n, x_n)$ does not depend on x_{n+1})
- Requires only one known point (single point method)
- The local truncation error is $\mathcal{O}(\Delta t^2)$
- The global error accumulated after n steps $\mathcal{O}(\Delta t)$

- Explicit (since $f(t_n, x_n)$ does not depend on x_{n+1})
- Requires only one known point (single point method)
- The local truncation error is $\mathcal{O}(\Delta t^2)$
- The global error accumulated after n steps $\mathcal{O}(\Delta t)$
- Problem: the method is conditionally stable for $\Delta t \leq \Delta t_{cr}$.

The implicit Euler method for ODE

The implicit Euler method – first-order finite difference method for solving initial-value problem for ODE

The implicit Euler method for ODE

The implicit Euler method – first-order finite difference method for solving initial-value problem for ODE

Lets us chose $n + 1$ as the base point for:

$$\frac{dx}{dt} = f(x, t) \quad \text{with} \quad x(t_0) = x_0$$

The implicit Euler method for ODE

The implicit Euler method – first-order finite difference method for solving initial-value problem for ODE

Lets us chose $n + 1$ as the base point for:

$$\frac{dx}{dt} = f(x, t) \quad \text{with} \quad x(t_0) = x_0$$

Implicit finite difference (first order):

$$x'|_{n+1} = \frac{x_{n+1} - x_n}{\Delta t}$$

then

$$x_{n+1} = x_n + f(x_{n+1}, t_{n+1})\Delta t$$

The implicit Euler method for ODE

- Implicit (since $f(x_{n+1}, t_{n+1})$ does depend on x_{n+1})

The implicit Euler method for ODE

- Implicit (since $f(x_{n+1}, t_{n+1})$ does depend on x_{n+1})
- The implicit Euler is unconditionally stable.

The implicit Euler method for ODE

- Implicit (since $f(x_{n+1}, t_{n+1})$ does depend on x_{n+1})
- The implicit Euler is unconditionally stable.
- However, if $f(x, t)$ is non-linear, then we need to use one of the methods for solving non-linear equations.

Consider the 'linear test equation':

$$\frac{dx(t)}{dt} = \lambda x(t)$$

where $\lambda \in \mathbb{C}$ and $x(t = 0) = x_0 \neq 0$.

The exact solution of this equation is:

$$x(t) = x_0 e^{\lambda t}$$

For $\Re(\lambda) < 0$, then the solution $x(t \rightarrow \infty) \rightarrow 0$.

Stability of explicit Euler equation

$$x_{n+1} = x_n + \lambda \delta t x_n$$
$$x_{n+1} = (1 + \lambda \delta t)^n x_0$$

So for the case when $\Re(\lambda) < 0$:

$$|1 + \lambda \delta t| < 1$$

Stability of explicit Euler equation

$$x_{n+1} = x_n + \lambda \delta t x_n$$

$$x_{n+1} = (1 + \lambda \delta t)^n x_0$$

So for the case when $\Re(\lambda) < 0$:

$$|1 + \lambda \delta t| < 1$$

If we restrict that $\lambda \in \mathbb{R}$:

$$-1 < 1 + \lambda \delta t < 1$$

$$-2 < \lambda \delta t < 0$$

$$0 < \delta t < t - \frac{2}{\lambda}$$

(as $\delta t > 0$ and $\lambda < 0$).

Stability of explicit Euler equation

$$x_{n+1} = x_n + \lambda \delta t x_n$$
$$x_{n+1} = (1 + \lambda \delta t)^n x_0$$

So for the case when $\Re(\lambda) < 0$:

$$|1 + \lambda \delta t| < 1$$

If we restrict that $\lambda \in \mathbb{R}$:

$$-1 < 1 + \lambda \delta t < 1$$

$$-2 < \lambda \delta t < 0$$

$$0 < \delta t < t - \frac{2}{\lambda}$$

(as $\delta t > 0$ and $\lambda < 0$).

The condition of stability is:

$$\delta t < -\frac{2}{\lambda}$$

Stability of implicit Euler equation

$$x_{n+1} = x_n + \lambda \delta t x_{n+1}$$

$$x_{n+1} = \frac{1}{1 - \lambda \delta t} x_n$$

$$x_{n+1} = \left(\frac{1}{1 - \lambda \delta t} \right)^n x_0$$

So for the case when $\Re(\lambda) < 0$:

$$\left| \frac{1}{1 - \lambda \delta t} \right| < 1$$

Stability of implicit Euler equation

$$x_{n+1} = x_n + \lambda \delta t x_{n+1}$$

$$x_{n+1} = \frac{1}{1 - \lambda \delta t} x_n$$

$$x_{n+1} = \left(\frac{1}{1 - \lambda \delta t} \right)^n x_0$$

So for the case when $\Re(\lambda) < 0$:

$$\left| \frac{1}{1 - \lambda \delta t} \right| < 1$$

If we restrict that $\lambda \in \mathbb{R}$:

$$|1 - \lambda \delta t| > 1$$

$$1 - \lambda \delta t > 1 \text{ or } 1 - \lambda \delta t < -1$$

$$\lambda \delta t < 0 \text{ or } \lambda \delta t > 2$$

Stability of implicit Euler equation

$$x_{n+1} = x_n + \lambda \delta t x_{n+1}$$

$$x_{n+1} = \frac{1}{1 - \lambda \delta t} x_n$$

$$x_{n+1} = \left(\frac{1}{1 - \lambda \delta t} \right)^n x_0$$

So for the case when $\Re(\lambda) < 0$:

$$\left| \frac{1}{1 - \lambda \delta t} \right| < 1$$

If we restrict that $\lambda \in \mathbb{R}$:

$$|1 - \lambda \delta t| > 1$$

$$1 - \lambda \delta t > 1 \text{ or } 1 - \lambda \delta t < -1$$

$$\lambda \delta t < 0 \text{ or } \lambda \delta t > 2$$

As $\delta t > 0$ and $\lambda < 0$, the condition of stability is always satisfied. Thus, implicit Euler method is unconditionally stable.