Random processes and Monte Carlo Simulation

m Importance Sampling and Statistical mechanics.
m Markov Chain Monte Carlo.
m Simulated Annealing
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m One of the problems in statistical mechanics is to
calculate the average (or expectation) value of a quantity
of interest in a physical system in thermal equilibrium at
temperature T'.
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m The average value of X:

<X> = ZX’LP<E1)
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Importance Sampling and Statistical Mechanics

m In rare few cases, this can be done analytically..

m In most cases, this has to be done numerically — however
a brute force summing will be out of question (in most
cases) — example if one has 10% gas molecules, and even
if each had 2 quantum states then the total number of
states is 2101111

m We can take the approach that we will calculate the sum
via Monte Carlo (random sampling). In that case, we will
chose N random states, k = 1... N and calculate:

Zk:l P<Ek)

The denominator is needed to normalize the weighted
average correctly..
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m Unfortunately, even this will not work correctly!

m In most cases, with E; > kgT', the Boltzmann probability
will be exponentially small...

m That is most of the states we choose will have have very
little contribution to the original average.

m Typically, only a small fraction of states will actually
contribute significantly to the value of the sum — and
choosing states at random, we are unlikely to pick these
important states and hence get a poor estimate of the
true value.

m But this is ideally suited for importance sampling!
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where w; is any sets of weights we choose.
m Making the particular choice g; = X;P(E;)/w;:
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m Importance sampling calculates the correct value of a sum
using a set of samples drawn non-uniformly.

m For any quantity g; that depends on states i we can define
a weighted average over states:

D Wigi

where w; is any sets of weights we choose.
m Making the particular choice g; = X;P(E;)/w;:

<w> _ 2 XiP(E) (X))

wy

> Wi a > Wi

m Then:
= ()
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m We can evaluate this expression approximately by selecting
a set of N sample states randomly but non-uniformly such
that the probability of choosing a state i is:

W;
pi =
Zf:j wj
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Importance Sampling and Statistical Mechanics

m We can evaluate this expression approximately by selecting
a set of N sample states randomly but non-uniformly such
that the probability of choosing a state i is:

w;

pi =
ZE:j Wy

m In this case, we get:
N
1 XkP
~y MBI S,
k=1 i

Note that the first sum is only over the states that we
sample, but the second sum is over all states 7 and has to
be calculated analytically!
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in the region where P(E;) is big and very few in the
region where it is small.

7/16



Importance Sampling and Statistical Mechanics

m Our goal is to choose w; so that most of the samples are
in the region where P(E;) is big and very few in the
region where it is small.

m We can choose w; = P(FE;), in which case the above
condition is satisfied as well as > . w; = 1.

7/16



Importance Sampling and Statistical Mechanics

m Our goal is to choose w; so that most of the samples are
in the region where P(E;) is big and very few in the
region where it is small.

m We can choose w; = P(FE;), in which case the above
condition is satisfied as well as > . w; = 1.

m In other words, we just choose IV states in proportion to
their Boltzmann probabilities and take the average of X
over them..

7/16



Importance Sampling and Statistical Mechanics

m Our goal is to choose w; so that most of the samples are
in the region where P(E;) is big and very few in the
region where it is small.

m We can choose w; = P(FE;), in which case the above
condition is satisfied as well as > . w; = 1.

m In other words, we just choose IV states in proportion to
their Boltzmann probabilities and take the average of X
over them..

m Unfortunately, we are not done yet — The catch is that it
is not easy to pick states with probability P(FE;). This is
because to calculate P(FE;), we need to know the
partition function, Z.
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probability P(E;), without knowing the partition function,
using a device called Markov Chain.
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m Remarkably, it turns out that we can choose states with
probability P(E;), without knowing the partition function,
using a device called Markov Chain.

m In this, we want states for the sum (X) = + Zgzl Xk,

which we will get by generating a Markov chain.

m Consider a single step in the process — Suppose that the
previous state for the step before this one, was state 7.

m For the new state, instead of choosing randomly, we will
make some change (usually small) to the state i so as to
Create a new state.

m The choice of the new state is determined probabilistically
by a set of transition probablilities 7;; that give the
probability of changing from state i to j.
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Markov Chain

m If we choose T;; correctly, we can arrange that the
probability of visiting any particular state on any step of
the Markov chain to be precisely the Boltzmann
probability, P(E;).
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Markov Chain

m If we choose T;; correctly, we can arrange that the
probability of visiting any particular state on any step of
the Markov chain to be precisely the Boltzmann
probability, P(E;).

m When we take many steps and generate the entire chain,
the complete set of states that we move through is a
correct sample of the Boltzmann distribution and we can
average any quantity we like over these states.
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Markov Chain
m The trick lies in choosing T;;:

> Ti=1

J
and also

T, _PE) ez
_— = = — A

_ B(E;—E;)
T P(E;) e~ BE: |7

In other words, we are choosing a particular value for the
ratio of the probability to go from i to j and the
probability to go back from j to i.
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Markov Chain
m The trick lies in choosing T;;:

> Ti=1

J
and also

T, _PE) ez
_— = = — A

T, P(E) e PE/Z

B(E;—E;)

In other words, we are choosing a particular value for the
ratio of the probability to go from i to j and the
probability to go back from j to i.

m The Boltzmann distribution is a fixed point of the Markov
chain.
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Metropolis algorithm

m While this is all good — we still need to figure out what
T;; should be.
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1 if B <E,

Fe=N\esw-m) 5 p > B,
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m While this is all good — we still need to figure out what
T;; should be.

m The most common choice is the choice that leads to the
Metropolis algorithm.

m Note that we are allowed to visit the same state more
than once in the Markov chain..

m Suppose we generate a new state j after making some
change in state i. We chose the particular change we
make uniformly at random from a specified set of possible
changes — called the move set.

m We will accept or reject the new state with probability P,:
P _ 1 it B} <E,
© e PEE) if B > B,

m This scheme will satisfy all the criterion of the transition
probability: % — ¢ B(Ei—E;j)
ji
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Metropolis Algorithm

Choose a random starting state.
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Metropolis Algorithm

Choose a random starting state.

Choose a move uniformly at random from an allowed set
of moves.

Calculate the probability, P, to accept or reject the move.

With probability P,, accept the move — ie system changes
to the new state; OR reject the move — ie system stays in
the current state.

Measure the value of the quantity of interest and add it to
the running sum.

@ Go to step 2.
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Metropolis Algorithm

m The steps where you reject the move that dont change
the state of the system do count as steps.
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Metropolis Algorithm

m The steps where you reject the move that dont change
the state of the system do count as steps.

m The number of moves that you chose to take you from i
to j should be the same as from j to i.

m One has to choose a move set such that every possible
state is reachable.

m That the Markov chain will go to Boltzmann distribution
is proved but, how long will it to take to reach
equillibrium is not known.
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-0.50
-0.75
-1.00
-1.25

Energy

-1.50
-1.75

-2.00

—
~

Sl

=

o =
® o

o
o

Magnetization
o o
VRS

o
°

1.0

15

2.0 25 3.0
Temperature (T)

35

4.0

1.0 15 2.0 25 3.
Temperature (T)

35 4.0

5
S
S

w
S
3

Susceptibility
=N
s 8

1.0

15

2.0 25 3.0
Temperature (T)

35

4.0

1.0 15 2.0 25 3.0
Temperature (T)

35 40

14/16



Simulated Annealing

m If we are interested in the ground state energy of a system
(classical or quantum), we can use simulated annealing.
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m If we are interested in the ground state energy of a system
(classical or quantum), we can use simulated annealing.

m The probability that the system is in a state i is:

e BE: _4E,
P(E) = —, Z =Y el

m Let us assume that the system has a single unique ground
state and let us choose our energy scale such that E; = 0
in the ground state and E; > 0 for all others.

m Then in the limit 7 — 0, 5 — oo and e % — 0 except
in the ground state where ¢ = 1.

m This in this limit:

P(E,) = 1 for E; =0
Y00 for £, > 0
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Simulated Annealing

m One of the ways to find the ground state is then tp slowly
lowering the temperature, and see what state the system
lands in.
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Simulated Annealing

m One of the ways to find the ground state is then tp slowly
lowering the temperature, and see what state the system
lands in.

m As one lowers the temperature, the system should land in
the ground-state!
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