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Markov Chain Monte Carlo.
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Importance Sampling and Statistical Mechanics

One of the problems in statistical mechanics is to
calculate the average (or expectation) value of a quantity
of interest in a physical system in thermal equilibrium at
temperature T .

One in general doesn’t know the exact state of the
physical system.
Instead we know that at temperature T , a system will
pass through a succession of states such that the
probability of occupying a state i with energy Ei is:

P (Ei) =
e−βEi

Z
, Z =

∑
i

e−βEi

The average value of X:

〈X〉 =
∑
i

XiP (Ei)

2/16



Importance Sampling and Statistical Mechanics

One of the problems in statistical mechanics is to
calculate the average (or expectation) value of a quantity
of interest in a physical system in thermal equilibrium at
temperature T .
One in general doesn’t know the exact state of the
physical system.

Instead we know that at temperature T , a system will
pass through a succession of states such that the
probability of occupying a state i with energy Ei is:

P (Ei) =
e−βEi

Z
, Z =

∑
i

e−βEi

The average value of X:

〈X〉 =
∑
i

XiP (Ei)

2/16



Importance Sampling and Statistical Mechanics

One of the problems in statistical mechanics is to
calculate the average (or expectation) value of a quantity
of interest in a physical system in thermal equilibrium at
temperature T .
One in general doesn’t know the exact state of the
physical system.
Instead we know that at temperature T , a system will
pass through a succession of states such that the
probability of occupying a state i with energy Ei is:

P (Ei) =
e−βEi

Z
, Z =

∑
i

e−βEi

The average value of X:

〈X〉 =
∑
i

XiP (Ei)

2/16



Importance Sampling and Statistical Mechanics

One of the problems in statistical mechanics is to
calculate the average (or expectation) value of a quantity
of interest in a physical system in thermal equilibrium at
temperature T .
One in general doesn’t know the exact state of the
physical system.
Instead we know that at temperature T , a system will
pass through a succession of states such that the
probability of occupying a state i with energy Ei is:

P (Ei) =
e−βEi

Z
, Z =

∑
i

e−βEi

The average value of X:

〈X〉 =
∑
i

XiP (Ei)

2/16



Importance Sampling and Statistical Mechanics

In rare few cases, this can be done analytically..

In most cases, this has to be done numerically – however
a brute force summing will be out of question (in most
cases) – example if one has 1023 gas molecules, and even
if each had 2 quantum states then the total number of
states is 21023!!!!
We can take the approach that we will calculate the sum
via Monte Carlo (random sampling). In that case, we will
chose N random states, k = 1 . . . N and calculate:

〈X〉 '
∑N

k=1XkP (Ek)∑N
k=1 P (Ek)

The denominator is needed to normalize the weighted
average correctly..
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Importance Sampling and Statistical Mechanics

Unfortunately, even this will not work correctly!

In most cases, with Ei � kBT , the Boltzmann probability
will be exponentially small...
That is most of the states we choose will have have very
little contribution to the original average.
Typically, only a small fraction of states will actually
contribute significantly to the value of the sum – and
choosing states at random, we are unlikely to pick these
important states and hence get a poor estimate of the
true value.
But this is ideally suited for importance sampling!
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Importance Sampling and Statistical Mechanics

Importance sampling calculates the correct value of a sum
using a set of samples drawn non-uniformly.

For any quantity gi that depends on states i we can define
a weighted average over states:

〈g〉w =

∑
iwigi∑
iwi

where wi is any sets of weights we choose.
Making the particular choice gi = XiP (Ei)/wi:〈

XiP (Ei)

wi

〉
w

=

∑
iXiP (Ei)∑

iwi
=
〈X〉∑
iwi

Then:

〈X〉 =
〈
XiP (Ei)

wi

〉
w

∑
i

wi
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Importance Sampling and Statistical Mechanics

We can evaluate this expression approximately by selecting
a set of N sample states randomly but non-uniformly such
that the probability of choosing a state i is:

pi =
wi∑
j wj

In this case, we get:

〈X〉 ' 1

N

N∑
k=1

XkP (Ek)

wk

∑
i

wi

Note that the first sum is only over the states that we
sample, but the second sum is over all states i and has to
be calculated analytically!
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Importance Sampling and Statistical Mechanics

Our goal is to choose wi so that most of the samples are
in the region where P (Ei) is big and very few in the
region where it is small.

We can choose wi = P (Ei), in which case the above
condition is satisfied as well as

∑
iwi = 1.

In other words, we just choose N states in proportion to
their Boltzmann probabilities and take the average of X
over them..
Unfortunately, we are not done yet – The catch is that it
is not easy to pick states with probability P (Ei). This is
because to calculate P (Ei), we need to know the
partition function, Z.
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Markov Chain

Remarkably, it turns out that we can choose states with
probability P (Ei), without knowing the partition function,
using a device called Markov Chain.

In this, we want states for the sum 〈X〉 = 1
N

∑N
k=1Xk,

which we will get by generating a Markov chain.
Consider a single step in the process – Suppose that the
previous state for the step before this one, was state i.
For the new state, instead of choosing randomly, we will
make some change (usually small) to the state i so as to
create a new state.
The choice of the new state is determined probabilistically
by a set of transition probablilities Tij that give the
probability of changing from state i to j.
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Markov Chain

If we choose Tij correctly, we can arrange that the
probability of visiting any particular state on any step of
the Markov chain to be precisely the Boltzmann
probability, P (Ei).

When we take many steps and generate the entire chain,
the complete set of states that we move through is a
correct sample of the Boltzmann distribution and we can
average any quantity we like over these states.
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Markov Chain

The trick lies in choosing Tij:∑
j

Tij = 1

and also

Tij
Tji

=
P (Ej)

P (Ei)
=
e−βEj/Z

e−βEi/Z
= e−β(Ej−Ei)

In other words, we are choosing a particular value for the
ratio of the probability to go from i to j and the
probability to go back from j to i.

The Boltzmann distribution is a fixed point of the Markov
chain.
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Metropolis algorithm

While this is all good – we still need to figure out what
Tij should be.

The most common choice is the choice that leads to the
Metropolis algorithm.
Note that we are allowed to visit the same state more
than once in the Markov chain..
Suppose we generate a new state j after making some
change in state i. We chose the particular change we
make uniformly at random from a specified set of possible
changes – called the move set.
We will accept or reject the new state with probability Pa:

Pa =

{
1 if Ej ≤ Ei,

e−β(Ej−Ei) if Ej > Ei

This scheme will satisfy all the criterion of the transition
probability: Tij

Tji
= e−β(Ei−Ej)
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Metropolis Algorithm

1 Choose a random starting state.

2 Choose a move uniformly at random from an allowed set
of moves.

3 Calculate the probability, Pa to accept or reject the move.
4 With probability Pa, accept the move – ie system changes
to the new state; OR reject the move – ie system stays in
the current state.

5 Measure the value of the quantity of interest and add it to
the running sum.

6 Go to step 2.
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Metropolis Algorithm

The steps where you reject the move that dont change
the state of the system do count as steps.

The number of moves that you chose to take you from i
to j should be the same as from j to i.
One has to choose a move set such that every possible
state is reachable.
That the Markov chain will go to Boltzmann distribution
is proved but, how long will it to take to reach
equillibrium is not known.
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Ising Model

E = −
∑
〈ij〉

sisj

14/16



Simulated Annealing

If we are interested in the ground state energy of a system
(classical or quantum), we can use simulated annealing.

The probability that the system is in a state i is:

P (Ei) =
e−βEi

Z
Z =

∑
i

e−βEi

Let us assume that the system has a single unique ground
state and let us choose our energy scale such that Ei = 0
in the ground state and Ei > 0 for all others.
Then in the limit T → 0, β →∞ and e−βEi → 0 except
in the ground state where e0 = 1.
This in this limit:

P (Ei) =

{
1 for Ei = 0

0 for Ei > 0

15/16



Simulated Annealing

If we are interested in the ground state energy of a system
(classical or quantum), we can use simulated annealing.
The probability that the system is in a state i is:

P (Ei) =
e−βEi

Z
Z =

∑
i

e−βEi

Let us assume that the system has a single unique ground
state and let us choose our energy scale such that Ei = 0
in the ground state and Ei > 0 for all others.
Then in the limit T → 0, β →∞ and e−βEi → 0 except
in the ground state where e0 = 1.
This in this limit:

P (Ei) =

{
1 for Ei = 0

0 for Ei > 0

15/16



Simulated Annealing

If we are interested in the ground state energy of a system
(classical or quantum), we can use simulated annealing.
The probability that the system is in a state i is:

P (Ei) =
e−βEi

Z
Z =

∑
i

e−βEi

Let us assume that the system has a single unique ground
state and let us choose our energy scale such that Ei = 0
in the ground state and Ei > 0 for all others.

Then in the limit T → 0, β →∞ and e−βEi → 0 except
in the ground state where e0 = 1.
This in this limit:

P (Ei) =

{
1 for Ei = 0

0 for Ei > 0

15/16



Simulated Annealing

If we are interested in the ground state energy of a system
(classical or quantum), we can use simulated annealing.
The probability that the system is in a state i is:

P (Ei) =
e−βEi

Z
Z =

∑
i

e−βEi

Let us assume that the system has a single unique ground
state and let us choose our energy scale such that Ei = 0
in the ground state and Ei > 0 for all others.
Then in the limit T → 0, β →∞ and e−βEi → 0 except
in the ground state where e0 = 1.

This in this limit:

P (Ei) =

{
1 for Ei = 0

0 for Ei > 0
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Simulated Annealing

One of the ways to find the ground state is then tp slowly
lowering the temperature, and see what state the system
lands in.

As one lowers the temperature, the system should land in
the ground-state!
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