
Random processes and Monte Carlo Simulation

Monte Carlo integration.
Non-uniform distributions.
Random walk.
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Mean value method

There are better ways of evalutating this integral:

I =

∫ b

a

f(x)dx

Average value 〈f〉 in range a to b is:

〈f〉 = 1

b− a

∫ b

a

f(x)dx =
I

b− a
A simple way to estimate 〈f〉 is to just measure f(x) at N
points, x1, x2, . . . , xN chosen uniformly between a and b:

〈f〉 = 1

N

N∑
i=1

f(xi)

I 'b− a
N

N∑
i=1

f(xi)
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Error Analysis

Variance of the sum on N independent random numbers
is equal to N times the variance of a single one.

Random numbers in this case are the values f(xi) and we
can estimate the variance of a single one of them
varf = 〈f 2〉 − 〈f〉2 with:

〈f〉 = 1

N

N∑
i=1

f(xi) 〈f 2〉 = 1

N

N∑
i=1

[f(xi)]
2

Variance on the sum is N times the variance on a single
term or Nvarf .
Error/standard deviation on the integral:

σ =
b− a
N

√
Nvarf = (b− a)

√
varf√
N

which goes as 1/
√
N but the variance is smaller!
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Non-uniform sampling

In a large number of situations, random numbers with
nonuniform distribution are needed (rather than uniform
distribution)

Radioactive decay
Experiments with different types of distributions

How does one generate non-uniform random number
distributions with a uniform random number generators?
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von Neumann Rejection

Generating a non-uniform distribution with a probability
distribution w(x):

Generate two random numbers xi on [xmin, xmax] and yi
on [ymin, ymax]

If yi < w(xi) accept xi.
If yi > w(xi) reject xi.
The xi so accepted will have the weighting w(xi).
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von Neumann Rejection

w(x) = e−x
2

x ∈ [0, 2]
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Inversion method

Suppose we have a source of random numbers z drawn
from a distribution with probability density q(z) – the
probability of generating a number between z and z + dz
is q(z)dz.

Suppose we have a function x = x(z).
If z is random, x(z) will also be random, with a different
distribution p(x).
Our goal is to choose the function x(z) such that x has
the distribution we want.
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Inversion method

The probability of generating a value of x between x and
x+ dx is by definition equal to the probability of
generating a value of z in the corresponding z interval:

p(x)dx = q(z)dz

In most common cases, q(z) = 1 in the interval [0, 1].
Then integrating both sides:∫ x(z)

−∞
p(x′)dx′ =

∫ z

0

dz′ = z

If we can do the integral on the left and solve the
equation, we will have the required x(z)!
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Inversion method

Example: Suppose we want to generate real random numbers
x in the interval [0,∞] with the exponential probability
distribution:

p(x) =
1

µ
e−µx

µ

∫ x(z)

0

e−µx
′
dx′ = 1− e−µx = z

x =− 1

µ
ln(1− z)

Thus if we feed the above equation uniformly distributed z in
interval [0, 1], it will generate the exponential distribution x for
us.
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Gaussian random numbers

A common problem in physics calculations is the
generation of random numbers drawn from a Gaussian (or
normal) distribution:

p(x) =
1√
2πσ2

exp

(
− x2

2σ2

)

This does not allow inversion! As the integral is not
analytic...
However, consider two independent random numbers x
and y drawn from a Gaussian distribution with the same
σ. The probability that a point (x, y) falls in an element
dxdy of the xy plane:

p(x)dx× p(y)dy =
1

2πσ2
exp

(
− x2 + y2

2σ2

)
dxdy

10/17



Gaussian random numbers

A common problem in physics calculations is the
generation of random numbers drawn from a Gaussian (or
normal) distribution:

p(x) =
1√
2πσ2

exp

(
− x2

2σ2

)
This does not allow inversion! As the integral is not
analytic...

However, consider two independent random numbers x
and y drawn from a Gaussian distribution with the same
σ. The probability that a point (x, y) falls in an element
dxdy of the xy plane:

p(x)dx× p(y)dy =
1

2πσ2
exp

(
− x2 + y2

2σ2

)
dxdy

10/17



Gaussian random numbers

A common problem in physics calculations is the
generation of random numbers drawn from a Gaussian (or
normal) distribution:

p(x) =
1√
2πσ2

exp

(
− x2

2σ2

)
This does not allow inversion! As the integral is not
analytic...
However, consider two independent random numbers x
and y drawn from a Gaussian distribution with the same
σ. The probability that a point (x, y) falls in an element
dxdy of the xy plane:

p(x)dx× p(y)dy =
1

2πσ2
exp

(
− x2 + y2

2σ2

)
dxdy

10/17



Gaussian random numbers

In polar coordinates:

p(r, θ)drdθ =
r

σ2
exp

(
− r2

2σ2

)
dr× dθ

2π
≡ p(r)dr×p(θ)dθ

In this expression, θ is just a uniform distribution

p(θ) =
1

2π

The distribution of r can be inverted with z uniformly
distributed:

r =
√
−2σ2 ln(1− z)

Then one can construct x and y as:

x = r cos(θ) y = r sin(θ)
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Random Walk

A simple random walk is a sequence of unit steps where
each step is taken in the direction of one of the coordinate
axis, and each possible direction has equal probability of
being chosen.

Random walk on a lattice:

In two dimensions, a single step starting at the point with
integer coordinates (x,y) would be equally likely to move to
any of one of the four neighbors (x+1,y), (x-1,y), (x,y+1) and
(x,y-1).
In one dimension walk there are two possible neighbors
In three dimensions there are six possible neighbors.
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Random walk

Brownian motion (answer the question - how many
collisions, on average, a particle must take to travel a
distance R).

Electron transport in metals
Polymer simulations.
. . .

13/17



Random walk

Brownian motion (answer the question - how many
collisions, on average, a particle must take to travel a
distance R).
Electron transport in metals

Polymer simulations.
. . .

13/17



Random walk

Brownian motion (answer the question - how many
collisions, on average, a particle must take to travel a
distance R).
Electron transport in metals
Polymer simulations.

. . .

13/17



Random walk

Brownian motion (answer the question - how many
collisions, on average, a particle must take to travel a
distance R).
Electron transport in metals
Polymer simulations.
. . .

13/17



Simple Random walk

In 100 steps, 〈r〉 ∼ 8.9
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Various models of random walk

Persistent random walk

Restricted random walk
Self-avoiding random walk
. . .

Examples of applications:
Spread of inflectional diseases and effects of immunization
Spreading of fire
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A persistent random walk

A persistent random walk in 2 dimensions in a city with
n*n blocks

Condition: the walker can not step back
Goal: find average number of steps to get out the city
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Persistent Random walk

To escape 24× 24, 〈n〉 ∼ 92
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