Random processes and Monte Carlo Simulation

m Monte Carlo integration.
m Non-uniform distributions.
m Random walk.
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Mean value method

m There are better ways of evalutating this integral:
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Mean value method

m There are better ways of evalutating this integral:
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m Average value (f) in range a to b is:

b—a/f b—a

m A simple way to estimate (f) is to just measure f(x) at N
points, x1, xg,...,xx chosen uniformly between a and b:
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Error Analysis

m Variance of the sum on N independent random numbers
is equal to IV times the variance of a single one.
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m Random numbers in this case are the values f(x;) and we
can estimate the variance of a single one of them
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m Variance of the sum on N independent random numbers
is equal to IV times the variance of a single one.

m Random numbers in this case are the values f(x;) and we
can estimate the variance of a single one of them
varf = (f?) — (f)? with:
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m Variance on the sum is IV times the variance on a single
term or Nvarf.
m Error/standard deviation on the integral:

o= b]:[a\/Nvarf =(b—a) \;aﬁrf

which goes as 1/v/N but the variance is smaller!
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Non-uniform sampling

In a large number of situations, random numbers with
nonuniform distribution are needed (rather than uniform
distribution)
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Non-uniform sampling

In a large number of situations, random numbers with
nonuniform distribution are needed (rather than uniform
distribution)

m Radioactive decay
m Experiments with different types of distributions

How does one generate non-uniform random number
distributions with a uniform random number generators?
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von Neumann Rejection

Generating a non-uniform distribution with a probability
distribution w(x):
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von Neumann Rejection

Generating a non-uniform distribution with a probability
distribution w(x):
m Generate two random numbers z; on [Zpin, Tmaz] and y;
on [ymim ymaac]
m If y; < w(z;) accept z;.
m If y; > w(z;) reject ;.
m The z; so accepted will have the weighting w(x;).
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von Neumann Rejection

2

w(x)=e" x€]0,2]
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Inversion method

m Suppose we have a source of random numbers z drawn
from a distribution with probability density ¢(z) — the
probability of generating a number between 2 and z + dz
is q(2)dz.
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Inversion method

m Suppose we have a source of random numbers z drawn
from a distribution with probability density ¢(z) — the
probability of generating a number between 2 and z + dz
is q(2)dz.

m Suppose we have a function z = z(z).

m If z is random, z(z) will also be random, with a different
distribution p(z).

m Our goal is to choose the function x(z) such that x has
the distribution we want.
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Inversion method

m The probability of generating a value of x between z and
x + dx is by definition equal to the probability of
generating a value of z in the corresponding z interval:
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Inversion method

m The probability of generating a value of x between z and
x + dx is by definition equal to the probability of
generating a value of z in the corresponding z interval:

p(x)dr = q(z)dz

® In most common cases, ¢(z) = 1 in the interval [0, 1].
Then integrating both sides:

z(z) z
/ p(x')dx' = / dz' =z
—00 0
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Inversion method

m The probability of generating a value of x between z and
x + dx is by definition equal to the probability of
generating a value of z in the corresponding z interval:

p(x)dr = q(z)dz

® In most common cases, ¢(z) = 1 in the interval [0, 1].
Then integrating both sides:

z(z) z
/ p(x')dx' = / dz' =z
—00 0

m If we can do the integral on the left and solve the
equation, we will have the required z(2)!
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Inversion method

Example: Suppose we want to generate real random numbers
x in the interval [0, co] with the exponential probability
distribution:
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Inversion method

Example: Suppose we want to generate real random numbers
x in the interval [0, co] with the exponential probability

distribution: )

p(r) = —e
W

o)
u/ ety =1 —e M =2
0

1
r=——In(l—=z2
. ( )

Thus if we feed the above equation uniformly distributed z in
interval [0, 1], it will generate the exponential distribution = for

us.
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Gaussian random numbers

m A common problem in physics calculations is the
generation of random numbers drawn from a Gaussian (or
normal) distribution:

B 1 x?
p(z) = s exp | — 557
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Gaussian random numbers
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normal) distribution:
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m This does not allow inversion! As the integral is not
analytic...
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Gaussian random numbers

m A common problem in physics calculations is the
generation of random numbers drawn from a Gaussian (or
normal) distribution:

1 22
p(z) = ooz P ( - ﬁ)
m This does not allow inversion! As the integral is not
analytic...
m However, consider two independent random numbers
and y drawn from a Gaussian distribution with the same

0. The probability that a point (z,y) falls in an element
dxdy of the xy plane:

1 2 2
plw)dz x p(y)dy = — exp ( E u) dady

2mo? 202
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Gaussian random numbers

m In polar coordinates:

r

r 2 do
p(r,0)drdd = 3 XD (— ﬁ) dr x 5 = p(r)drxp(0)do
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Gaussian random numbers

m In polar coordinates:
2

r r do
p(r,0)drdd = 3 XD (— ﬁ) dr x 5 = p(r)drxp(0)do

m In this expression, 6 is just a uniform distribution

b0 = 5

m The distribution of r can be inverted with z uniformly
distributed:

r=+/—202In(1 — 2)
m Then one can construct x and y as:

x=rcos(f) y=rsin(h)
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Random Walk

m A simple random walk is a sequence of unit steps where
each step is taken in the direction of one of the coordinate
axis, and each possible direction has equal probability of
being chosen.
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Random Walk

m A simple random walk is a sequence of unit steps where
each step is taken in the direction of one of the coordinate
axis, and each possible direction has equal probability of
being chosen.

m Random walk on a lattice:

m In two dimensions, a single step starting at the point with
integer coordinates (x,y) would be equally likely to move to
any of one of the four neighbors (x+1,y), (x-1y), (x,y+1) and
(x,y-1).

m In one dimension walk there are two possible neighbors

m In three dimensions there are six possible neighbors.
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Random walk

m Brownian motion (answer the question - how many
collisions, on average, a particle must take to travel a
distance R).
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Random walk

m Brownian motion (answer the question - how many
collisions, on average, a particle must take to travel a
distance R).

m Electron transport in metals
m Polymer simulations.
...
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Simple Random walk

In 100 steps, (r) ~ 8.9
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Various models of random walk

m Persistent random walk
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Various models of random walk

m Persistent random walk
m Restricted random walk
m Self-avoiding random walk
...
Examples of applications:

Spread of inflectional diseases and effects of immunization
Spreading of fire
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A persistent random walk

m A persistent random walk in 2 dimensions in a city with
n*n blocks
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m A persistent random walk in 2 dimensions in a city with
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m Condition: the walker can not step back

16/17



A persistent random walk

m A persistent random walk in 2 dimensions in a city with
n*n blocks

m Condition: the walker can not step back
m Goal: find average number of steps to get out the city
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Persistent Random walk

To escape 24 x 24, (n) ~ 92
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