Random processes and Monte Carlo Simulation

m Monte Carlo integration.
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Monte Carlo integration — basic idea

m Normally when we are interested in some physical
phenomenon that has some random element, we write
down an exact, non-random description that gives the
answer for the average behaviour.
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m Normally when we are interested in some physical
phenomenon that has some random element, we write
down an exact, non-random description that gives the
answer for the average behaviour.

m In principle, we can reverse the argument: we can start
with an exact problem — such as the calculation of an
integral — and find an approximate solution to it by
running a suitable random process on the computer!

m This leads to novel ways of performing integrals..
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It is perfectly well behaved in the middle of its range — but
varies infinitely fast at the edges. 318
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m On the other hand since the entire function fits in a
rectangle of size 2x 1, the integral — the shaded area
under the curve — is finite and less than 2.

m Methods such as trapezoidal rule or Simpson’s rule or
Gaussian quadrature are not likely to work well as they
will not capture the infinitely fast variation of the function
at the edges.

m Monte carlo integration offers a simple way to tackle this
integral.
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General idea

m The shaded area under the curve is I and given that the
area of the rectangle is A = 2.

m If we choose a point randomly in the rectangle, the
probability that the point falls under the curve rather than
over it is p=1/A.

m We generate a large number, IV, of random points in the
bounding rectangle and check each one to see if it is below
the curve and keep a count of the number that are — k.

m Then the fraction of points below the curve is k/N. This
should be equal to the probabilitly, p = I/A

kA

I
N
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I = sin? | ——
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Error Analysis

m For simple integrals — monte carlo methods are not as
accurate as trapezoidal rule or Simpson’s rule!
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Error Analysis

m For simple integrals — monte carlo methods are not as
accurate as trapezoidal rule or Simpson’s rule!

Probability that a single random point falls below the curve is
p = I/A and that it falls above the curve is (1 — p).

Probability that a particular & points fall below the curve and
(N — k) fall above the curve is p*(1 — p)V=*.

N

But there are (k

) ways of choosing k points from a list of V.

Total probability that we get k points below:

P(k) = (jz)p’“(l —p)N*

Binomial distribution!
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Error Analysis

Mean of this distribution:

N
<k>=) kP(k)
k=0

Subsitute j=k—1 & M=N-1

= Npi <];4>pj(1 - )"
— ij_o
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Error Analysis

< k? > of this distribution:

Subsitute j=k—-2 & M
M
=NIN-1)p* )

= N(N —1)p*
<k >=<k(k—1)>+<k>=N(N-1)p*+ Np
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oA _ VIS
= VvVva N_—\/N
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Error Analysis

Variance of this distribution:

1 I
vark = Np(1 —p) :NZ(l_Z>

Expected error in the integral:

A JIA=T)
VN

o = Vvark—

N

1/2

The error varies with N as N~*/< which means the accuracy

improves as we increase V.
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Error Analysis

Variance of this distribution:

1 1
vark = Np(1 —p) = NZ(l - Z)
Expected error in the integral:
A I(A-1T)

o= Vvark— =

NTTUN

The error varies with N as N—1/2

improves as we increase V.

which means the accuracy

Error in Trapezoidal rule went as O(h?) ~ 7 and in
Simpson's rule as O(h*) ~ 7 — clearly showing that when we
can use the regular methods — we should use them. This
method is only good for pathological integrands.
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Mean value method

m There are better ways of evalutating this integral:
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Mean value method

m There are better ways of evalutating this integral:

[ / ' o)

m Average value (f) in range a to b is:

b—a/f b—a

m A simple way to estimate (f) is to just measure f(z) at
N points, z1,%9,..., TN chosen uniformly at random
between a and b:

T
N Z f (i)
i=1
b—a
I~ N Zf(xl)

i=1
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Error Analysis

m Variance of the sum on N independent random numbers
is equal to IV times the variance of a single one.
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is equal to IV times the variance of a single one.
m Random numbers in this case are the values f(x;) and we
can estimate the variance of a single one of them
varf = (f?) — (f)? with:
N N
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m Variance of the sum on N independent random numbers
is equal to IV times the variance of a single one.

m Random numbers in this case are the values f(x;) and we
can estimate the variance of a single one of them
varf = (f?) — (f)? with:

1 & 1 &

) =52 f @) (f7) =5 D _lf@))

i=1 =1

m Variance on the sum is IV times the variance on a single
term or Nvarf.
m Error/standard deviation on the integral:

o= b]:[a\/Nvarf =(b—a) \;aﬁrf

which goes as 1/v/N but the variance is smaller!
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Multidimensional integrals

m The error analysis we did for Monte Carlo integration
remains the same irrespective of the number of
dimensions!!!
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Multidimensional integrals

m The error analysis we did for Monte Carlo integration
remains the same irrespective of the number of
dimensions!!!

m If we have N points then deterministic methods will get
N4 points in each dimension. As a result the overall
error in midpoint rule would be N~1/¢ where as in
trapeziodal N—2/¢.

m For higher dimensions — more than 4/5, Monte carlo
method becomes faster than any of the deterministic
methods!
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Importance Sampling

m Monte carlo integration is good for integrating
pathological functions but sometimes it does not work
very well.
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Importance Sampling

m Monte carlo integration is good for integrating
pathological functions but sometimes it does not work
very well.

m In particular, if the function to be integrated contains a
divergence!

m This is because occasionally when the random point is
near the divergence, you will get a big change in the sum..

m The variance, o in such cases is very high.
m Importance sampling is a way to get around this problem.
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Importance Sampling

m For any general function, g(x), we can define a weighted
average over the interval from a to b:

_ fab w(z)g(z)dr
() f; w(z)dr

where w(x) is any function we choose.
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Importance Sampling

m For any general function, g(x), we can define a weighted
average over the interval from a to b:

_ fab w(z)g(z)dr
() f; w(z)dr

where w(x) is any function we choose.

m Consider the integral:
1= / f(a

m Setting g(x) = f(z)/w(x) we have:

<f(:v)>  [w(@) f(a) w(z)de T
w fabw(x)d:c fabw(a:)dx
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Importance Sampling

m This is similar to the mean value method but allows us to
calculate the integral from a weighted average rather than
a standard uniform average.
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m This is similar to the mean value method but allows us to
calculate the integral from a weighted average rather than
a standard uniform average.

m Let us define a probability density function:

p(x) =

w(z)

ff w(x)dx

m Let us sample N random points, z;, non-uniformly with
this density. That is the probability of generating a value
in the interval between x and z + dz will be p(z)dx.

m Then the average number of sample that fall in this
interval are Np(z)dz and so for any function g(x):

N b
> gle) = [ Nplalgayts
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Importance Sampling

m So using this the general weighted average is given as:
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m Putting it all together for our integral:
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m The formula allows us to estimate I by calculating not the
sum SN f(x;), but instead the modified sum
SOV () /w(x;) where w(x) is any function we choose.

m This is useful because it allows us to choose a w(x) that
can get rid of the pathologies of f(x).
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Importance Sampling

m So using this the general weighted average is given as:

_f;w(x)g(:v)dx_ b Dol $Nl al .
o= = | rargtara = 3 2ol

m Putting it all together for our integral:

Lo flz) [
I~ N ; (@) /a w(z)dx
m The formula allows us to estimate I by calculating not the
sum SN f(x;), but instead the modified sum
SOV () /w(x;) where w(x) is any function we choose.
m This is useful because it allows us to choose a w(x) that
can get rid of the pathologies of f(x).
m The price we pay is that we have to draw our samples
from a non-uniform distribution rather than a uniform

distribution.
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Error Analysis

o= —W/ w(z)dx

where

varyg = (9°)w — ()%
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