
Random processes and Monte Carlo Simulation

Monte Carlo integration.
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Monte Carlo integration – basic idea

Normally when we are interested in some physical
phenomenon that has some random element, we write
down an exact, non-random description that gives the
answer for the average behaviour.

In principle, we can reverse the argument: we can start
with an exact problem – such as the calculation of an
integral – and find an approximate solution to it by
running a suitable random process on the computer!
This leads to novel ways of performing integrals..
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General idea

Suppose we want to evaluate the integral:

I =

∫ 2

0

sin2

[
1

x(2− x)

]
dx

It is perfectly well behaved in the middle of its range – but
varies infinitely fast at the edges.
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General idea

On the other hand since the entire function fits in a
rectangle of size 2×1, the integral – the shaded area
under the curve – is finite and less than 2.

Methods such as trapezoidal rule or Simpson’s rule or
Gaussian quadrature are not likely to work well as they
will not capture the infinitely fast variation of the function
at the edges.
Monte carlo integration offers a simple way to tackle this
integral.
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General idea

The shaded area under the curve is I and given that the
area of the rectangle is A = 2.

If we choose a point randomly in the rectangle, the
probability that the point falls under the curve rather than
over it is p = I/A.
We generate a large number, N , of random points in the
bounding rectangle and check each one to see if it is below
the curve and keep a count of the number that are – k.
Then the fraction of points below the curve is k/N . This
should be equal to the probabilitly, p = I/A

I ' kA

N
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Example

I =

∫ 2

0

sin2

[
1

x(2− x)

]
dx

N I
104 1.4542
105 1.45252
106 1.452492
107 1.4513378
108 1.45123546
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Error Analysis

For simple integrals – monte carlo methods are not as
accurate as trapezoidal rule or Simpson’s rule!

Probability that a single random point falls below the curve is
p = I/A and that it falls above the curve is (1− p).

Probability that a particular k points fall below the curve and
(N − k) fall above the curve is pk(1− p)N−k.

But there are
(
N
k

)
ways of choosing k points from a list of N .

Total probability that we get k points below:

P (k) =

(
N

k

)
pk(1− p)N−k

Binomial distribution!
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Error Analysis

Mean of this distribution:

< k > =
N∑
k=0

kP (k)

=
N∑
k=1

k

(
N

k

)
pk(1− p)N−k

= Np
N∑
k=1

(
N − 1

k − 1

)
pk−1(1− p)(N−1)−(k−1)

Subsitute j = k − 1 & M = N − 1

= Np
M∑
j=0

(
M

j

)
pj(1− p)M−j

= Np
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Error Analysis

< k2 > of this distribution:

< k(k − 1) > =
N∑
k=0

k(k − 1)P (k)

=
N∑
k=2

k(k − 1)

(
N

k

)
pk(1− p)N−k

= N(N − 1)p2
N∑
k=2

(
N − 2

k − 2

)
pk−2(1− p)(N−2)−(k−2)

Subsitute j = k − 2 & M = N − 2

= N(N − 1)p2
M∑
j=0

(
M

j

)
pj(1− p)M−j

= N(N − 1)p2

< k2 >=< k(k − 1) > + < k >= N(N − 1)p2 +Np
9/18



Error Analysis

Variance of this distribution:

vark = Np(1− p) = N
I

A

(
1− I

A

)

Expected error in the integral:

σ =
√
vark

A

N
=

√
I(A− I)√

N

The error varies with N as N−1/2 which means the accuracy
improves as we increase N .

Error in Trapezoidal rule went as O(h2) ∼ 1
N2 and in

Simpson’s rule as O(h4) ∼ 1
N4 – clearly showing that when we

can use the regular methods – we should use them. This
method is only good for pathological integrands.
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Mean value method

There are better ways of evalutating this integral:

I =

∫ b

a

f(x)dx

Average value 〈f〉 in range a to b is:

〈f〉 = 1

b− a

∫ b

a

f(x)dx =
I

b− a
A simple way to estimate 〈f〉 is to just measure f(x) at
N points, x1, x2, . . . , xN chosen uniformly at random
between a and b:

〈f〉 = 1

N

N∑
i=1

f(xi)

I 'b− a
N

N∑
i=1

f(xi)

11/18



Mean value method

There are better ways of evalutating this integral:

I =

∫ b

a

f(x)dx

Average value 〈f〉 in range a to b is:

〈f〉 = 1

b− a

∫ b

a

f(x)dx =
I

b− a

A simple way to estimate 〈f〉 is to just measure f(x) at
N points, x1, x2, . . . , xN chosen uniformly at random
between a and b:

〈f〉 = 1

N

N∑
i=1

f(xi)

I 'b− a
N

N∑
i=1

f(xi)

11/18



Mean value method

There are better ways of evalutating this integral:

I =

∫ b

a

f(x)dx

Average value 〈f〉 in range a to b is:

〈f〉 = 1

b− a

∫ b

a

f(x)dx =
I

b− a
A simple way to estimate 〈f〉 is to just measure f(x) at
N points, x1, x2, . . . , xN chosen uniformly at random
between a and b:

〈f〉 = 1

N

N∑
i=1

f(xi)

I 'b− a
N

N∑
i=1

f(xi)

11/18



Error Analysis

Variance of the sum on N independent random numbers
is equal to N times the variance of a single one.

Random numbers in this case are the values f(xi) and we
can estimate the variance of a single one of them
varf = 〈f 2〉 − 〈f〉2 with:

〈f〉 = 1

N

N∑
i=1

f(xi) 〈f 2〉 = 1

N

N∑
i=1

[f(xi)]
2

Variance on the sum is N times the variance on a single
term or Nvarf .
Error/standard deviation on the integral:

σ =
b− a
N

√
Nvarf = (b− a)

√
varf√
N

which goes as 1/
√
N but the variance is smaller!
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Multidimensional integrals

The error analysis we did for Monte Carlo integration
remains the same irrespective of the number of
dimensions!!!

If we have N points then deterministic methods will get
N1/d points in each dimension. As a result the overall
error in midpoint rule would be N−1/d where as in
trapeziodal N−2/d.
For higher dimensions – more than 4/5, Monte carlo
method becomes faster than any of the deterministic
methods!
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Importance Sampling

Monte carlo integration is good for integrating
pathological functions but sometimes it does not work
very well.

In particular, if the function to be integrated contains a
divergence!
This is because occasionally when the random point is
near the divergence, you will get a big change in the sum..
The variance, σ in such cases is very high.
Importance sampling is a way to get around this problem.

14/18



Importance Sampling

Monte carlo integration is good for integrating
pathological functions but sometimes it does not work
very well.
In particular, if the function to be integrated contains a
divergence!

This is because occasionally when the random point is
near the divergence, you will get a big change in the sum..
The variance, σ in such cases is very high.
Importance sampling is a way to get around this problem.

14/18



Importance Sampling

Monte carlo integration is good for integrating
pathological functions but sometimes it does not work
very well.
In particular, if the function to be integrated contains a
divergence!
This is because occasionally when the random point is
near the divergence, you will get a big change in the sum..

The variance, σ in such cases is very high.
Importance sampling is a way to get around this problem.

14/18



Importance Sampling

Monte carlo integration is good for integrating
pathological functions but sometimes it does not work
very well.
In particular, if the function to be integrated contains a
divergence!
This is because occasionally when the random point is
near the divergence, you will get a big change in the sum..
The variance, σ in such cases is very high.

Importance sampling is a way to get around this problem.

14/18



Importance Sampling

Monte carlo integration is good for integrating
pathological functions but sometimes it does not work
very well.
In particular, if the function to be integrated contains a
divergence!
This is because occasionally when the random point is
near the divergence, you will get a big change in the sum..
The variance, σ in such cases is very high.
Importance sampling is a way to get around this problem.

14/18



Importance Sampling

For any general function, g(x), we can define a weighted
average over the interval from a to b:

〈g〉w =

∫ b

a
w(x)g(x)dx∫ b

a
w(x)dx

where w(x) is any function we choose.

Consider the integral:

I =

∫ b

a

f(x)dx

Setting g(x) = f(x)/w(x) we have:〈
f(x)

w(x)

〉
w

=

∫ b

a
w(x)f(x)/w(x)dx∫ b

a
w(x)dx

=
I∫ b

a
w(x)dx

I =

〈
f(x)

w(x)

〉
w

∫ b

a

w(x)dx
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Importance Sampling

This is similar to the mean value method but allows us to
calculate the integral from a weighted average rather than
a standard uniform average.

Let us define a probability density function:

p(x) =
w(x)∫ b

a
w(x)dx

Let us sample N random points, xi, non-uniformly with
this density. That is the probability of generating a value
in the interval between x and x+ dx will be p(x)dx.
Then the average number of sample that fall in this
interval are Np(x)dx and so for any function g(x):

N∑
i=1

g(xi) '
∫ b

a

Np(x)g(x)dx
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Importance Sampling

So using this the general weighted average is given as:

〈g〉w =

∫ b

a
w(x)g(x)dx∫ b

a
w(x)dx

=

∫ b

a

p(x)g(x)dx ' 1

N

N∑
i=1

g(xi)

Putting it all together for our integral:

I ' 1

N

N∑
i=1

f(xi)

w(xi)

∫ b

a

w(x)dx

The formula allows us to estimate I by calculating not the
sum

∑N
i=1 f(xi), but instead the modified sum∑N

i=1 f(xi)/w(xi) where w(x) is any function we choose.
This is useful because it allows us to choose a w(x) that
can get rid of the pathologies of f(x).
The price we pay is that we have to draw our samples
from a non-uniform distribution rather than a uniform
distribution.
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Error Analysis

σ =

√
varw(f/w)√

N

∫ b

a

w(x)dx

where
varwg = 〈g2〉w − 〈g〉2w
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