
Random processes and Monte Carlo Simulation

Applications of Monte Carlo simulations.
Random number generators.
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Random or Stochastic Processes

Random or Stochastic processes are those in which you cannot
predict the outcome of the upcoming event from the outcome
of the current event. For example:

Coin toss: the only prediction about the outcome: 50% of
the events will end up as tail being up.
Dice: In a large number of throws, the probability of
getting a given face is 1

6
.
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Applications of Monte Carlo simulations

Stochastic processes.

Complex systems (science).
Numerical integration.
Risk management.
Financial planning.
Cryptography
. . .
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How does one do Monte Carlo simulations

Let the computer throw "the coin" and record the
outcome.

Need a program that generates a variable with random
value.
Often need a program that generates a random variable
with a given probability distribution.
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Random numbers

Sources of random numbers:

Tables – "A million random digits with 100,000 normal
deviates" by RAND.
Hardware – external sources of random numbers which are
generated by from a physical process.
Software – source of pseudo random numbers.
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Software – random number generators

There are NO true random number generators – only
pseudo random number generators!!!

This is because computers have only a limited number of
bits to represent a number.
It implies that no matter which pseudo random number
generator you use – it will always repeat itself (period of
the generator).
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Good random number generators

Important issues:
Randomness.

Distribution of the numbers.
Long period.
Produce the same sequence if started with the same seed.
Fast.
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Two basic techniques for RNG

The standard method of generating pseudorandom numbers
use modular reduction in congruential relationships:

Congruential methods.

Feedback shift register methods
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Linear congruent method for RNG

Generates a pseudo random sequence of numbers
{x1, x2, . . . , xk} of length M over the interval [0,M − 1]:

xi = mod (axi−1 + c,M) = remainder
(
axi−1 + c

M

)

Starting value of x0 is called "seed"
Coefficients a and c should be chosen very carefully.

Note that

mod (b,M) = b− int(b/M) ∗M
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Example of linear congruent method

xi = mod (axi−1 + c,M)

mod (b,M) =b− int(b/M) ∗M

a = 4, c = 1,M = 9, x1 = 3 leads to the following sequence:

x2 =4

x3 =8

x4 =6

x5−10 =7, 2, 0, 1, 5, 3

interval:0− 8 i.e. [0,M − 1]
Period: 9 i.e. M numbers (then repeat).
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Magic numbers for linear congruent method

M (length of the sequence) is quite large.

No overflow. (For 32 bit machines M ≤ 232).
Good magic numbers for linear congruent method:

a = 16, 807 c = 0 M = 2, 147, 483, 647

a = 1, 664, 525 c = 1, 013, 904, 223 M = 2, 147, 483, 648

For c = 0 called "Multiplicative congruential generator".
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Random numbers on interval [A,B]

Scale results from xi on [0,M − 1] to yi on [0, 1].

yi =
xi

M − 1

Scale results from yi on [0, 1] to zi on [A,B]

zi = A+ (B − A) ∗ yi
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Feedback shift register generator

Simple shift register where the vacated bit is filled with the
exclusive-or of two other bits in the shift register.

4 bit shift-register pseudorandom number generator:

3 2 1 0

XOR

Bits 3 and 2 are combined by exclusive-or.
The register is shifted 1 step to the left.
The result of the exclusive-or is entered into bit 0.
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4bit shift register PRNG

Here is the pattern of bits, starting with 0001:

0001
0010
0100
1001
0011
0110
1101
1010
0101
1011
0111
1111
1110
1100
1000
0001

14/19



Commonly used PRNG

Most commonly used is Mersenne Twister (which is a
generalized feedback shift register method).

The commonly used version of Mersenne Twister,
MT19937.
It has a period of 219937 − 1.
Implemented in numpy.
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How do we check the RNG?

2D plot, xi and yi from two random sequences (parking lot test).

Plot 3D figure (xi, yi, zi)
Plot correlation (xi, xi+k)
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How can we check the RNG?

Examples of other assessments:
Uniformity – A random sequence should contain numbers
distributed in the unit interval with equal probability.

k-th moment:

< xk >=
1

N

N∑
i=1

xk
i =

1

k + 1

Near neighbour correlation:

1

N

N∑
i=1

xixi+k ≈
1

4
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Examples of other assessments

Uniformity (50000 random numbers)

4th moment: (50000 random numbers)

< x4 >= 0.1988

near neighbor correlation: (50000 random numbers)
= 0.2478
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Test suites for RNG

Good test suites exist – TestU01 – which can be used to
uncover problems in random number generators.

Dont try to invent your own random number generator –
unless you know what you are doing. This is very tricky
business!!!

19/19


