m Discrete Cosine Transform.
m Fast Fourier Transform.

m Convolution.

m Power spectrum.

1/1

Discrete Cosine Transform

m If the function f(z) is even (i.e. symmetric) about the
midpoint (z = £) then one can write the cosine series:

f(z) = Z Qg cos(27fx)

k=0

2/1

Discrete Cosine Transform

m If the function f(z) is even (i.e. symmetric) about the

midpoint (z = £) then one can write the cosine series:
= 2rkx
Fla) = 3 acos()

k=0

m This might seem like a big limitation making the whole
cosine transform virtually useless — but this is not the case.

2/1

Discrete Fourier Transform — reminder

m We had made any function periodic — say if we are only
interested in a portion of this non periodic function over a
finite interval, 0 to L, we can just take that portion and
repeat it to create a periodic function.

f(x)

3/1

Discrete Cosine Transform — even functions

m If we are interested in the function in a finite region, we
can make it symmetric by adding to it a mirror image of
itself and then repeating it endlessly!

4/1

Discrete Cosine Transform — even functions

m If we are interested in the function in a finite region, we
can make it symmetric by adding to it a mirror image of
itself and then repeating it endlessly!

m In practice, this is how the cosine transform is always used.

4/1

Discrete Cosine Transform — even functions

m If we are interested in the function in a finite region, we
can make it symmetric by adding to it a mirror image of
itself and then repeating it endlessly!

m In practice, this is how the cosine transform is always used.

m This also implies that the number of samples in the
transform is always even.

4/1

Discrete Cosine Transform (DCT)

Discrete Cosine Transform is a special case of Discrete Fourier
Transform.

QWkn
Cr = Zyn eXp)

5/1

Discrete Cosine Transform (DCT)

Discrete Cosine Transform is a special case of Discrete Fourier

Transform.

Cp = Z Yn exp

5
= Z Yn eXp(—
n=0

QWkn

)

N-1

2mkn 27kn
? N) + Z yn eXp<_Z N)

n:%N+1

5/1

Discrete Cosine Transform (DCT)

Discrete Cosine Transform is a special case of Discrete Fourier
Transform.

Cp = Z Yn exp

QWkn

)

il 27k 21k
:Zyn exp(—1 7;\[”) + Z Y €Xp(—1 7;Vn)

n=0 n=1N+1

in

3 N-—1

2mkn 2mk(N —n

= ynexp(—i——)+ > Yn-n eXp(Z%)

n=0 n:%N—&-l

Because the function is symmetric yo = yn,y1 = yn_1,- .. and

2tk — 1 forall k € Z

5/1

Discrete Cosine Transform (DCT)

Changing variables N — n — n in the right hand expression:

N—
2rkn
Z i exp(i =)

N

2ﬁkn
cr = Z Y eXp(—

6/1

Discrete Cosine Transform (DCT)

Changing variables N — n — n in the right hand expression:

2 omkn. 02! ok
TR TRKN
ck—nz_oynexp(—i ~)+ 2 Yn eXp(i——)
iIN-1
N 2mk(N/2) +9 : 2mkn
= COS n COS
Yo T YN/2 N Y N

6/1

Discrete Cosine Transform (DCT)

Changing variables N — n — n in the right hand expression:

LN-1
2rk A 27k
Ck —Zynexp n n)+ 2 Yn exp(i 7;\[”)
iIN-1
2rk(N/2) g 2rkn
=1%o + Yny2 COS (T + 2 ; UYn, COS N

Normally the cosine transform is applied to real samples,
which implies that the coefficients ¢, will all be real as well (as
they are sums of real terms).

6/1

Discrete Cosine Transform (DCT)

As y,, and ¢, are real, cy_, = ¢ = ¢,. The inverse transform:

7/1

Discrete Cosine Transform (DCT)

As y,, and ¢, are real, cy_, = ¢ = ¢,. The inverse transform:
-N-1

1 2mkn
Yn =7 chexp(z N)}

- k=0
1

r N 21kn i,
chexp(i I)+ Z cx exp(i

- k=0 k=IN+1

27rlm)}

==

7/1

Discrete Cosine Transform (DCT)

As y,, and ¢, are real, cy_, = ¢ = ¢,. The inverse transform:

Yn =

1
N L

-N—1

Z Ck exp
k=

1

- Z c exp(i

- k=0

1

Z Ck exp

27kn
N

N

2ﬂkn

ﬂ

2mkn
)+

Nz:l (,27rlm)
¢ exp(i N

k=IN+1

Z CN— keXP N

k=N+1

7/1

Discrete Cosine Transform (DCT)

As y,, and ¢, are real, cy_, = ¢ = ¢,. The inverse transform:

-N-1
1 2mkn
Un =% chexp(z N)}

L k=0
1] el 21kn i, 21kn
=¥ chexp(i I)+ Z cx exp(i I)}
- k=0 k=IN+1
1
1< 2k — 21 (N — k
= chexp(z 7;\]”) Z cN—k exp(—i ul I)n)]
k=0 k=N+1

7/1

Discrete Cosine Transform (DCT)

As y,, and ¢, are real, cy_, = ¢ = ¢,. The inverse transform:

“N—-1

1 27kn
Un =% chexp(z N)}

L k=0
IN _
1 22: (27rkn) sz (27rlfn)
=— ¢ exp(i X
2 L €XP N Cr €XP(1

k=0 k=1iN+1 N
|78 drkn, fex 2k
kn wkn
=¥ kz_%ckexp(z N)+ kz_; cp exp(—i N)}

Discrete Cosine Transform (DCT)

m The forward and reverse transforms are actually the same
mathematical expression (but for the 1/N factor).

8/1

Discrete Cosine Transform (DCT)

m The forward and reverse transforms are actually the same
mathematical expression (but for the 1/N factor).

m Thus, one can say that this transform is its own inverse.

8/1

Discrete Cosine Transform (DCT)

m The forward and reverse transforms are actually the same
mathematical expression (but for the 1/N factor).

m Thus, one can say that this transform is its own inverse.

m There is another commonly used form of this transform
where the sample points are in the middle of the sample
interval.

8/1

Discrete Cosine Transform (DCT)

m The forward and reverse transforms are actually the same
mathematical expression (but for the 1/N factor).

m Thus, one can say that this transform is its own inverse.

m There is another commonly used form of this transform
where the sample points are in the middle of the sample
interval.

m A nice feature of this DCT is that unlike DFT, it does not
assume that the samples are periodic.

8/1

Discrete Cosine Transform (DCT)

m The forward and reverse transforms are actually the same
mathematical expression (but for the 1/N factor).
m Thus, one can say that this transform is its own inverse.

m There is another commonly used form of this transform
where the sample points are in the middle of the sample
interval.

m A nice feature of this DCT is that unlike DFT, it does not
assume that the samples are periodic.

m This is much better suited for non periodic functions as
there is no discontinuity introduced.

8/1

Discrete Cosine Transform (DCT)

m The forward and reverse transforms are actually the same
mathematical expression (but for the 1/N factor).

m Thus, one can say that this transform is its own inverse.

m There is another commonly used form of this transform
where the sample points are in the middle of the sample
interval.

m A nice feature of this DCT is that unlike DFT, it does not
assume that the samples are periodic.

m This is much better suited for non periodic functions as
there is no discontinuity introduced.

m In principle, the discrete sine transform can also be
computed. However, the requirement of anti-symmetry
forces the function to be zero at either end of the range.
This does not happen often in real-world applications...

8/1

Fast Fourier Transform

m The Discrete Fourier Transform is defined as:

QWkn
Z Y exp(—i =)

9/1

Fast Fourier Transform

m The Discrete Fourier Transform is defined as:

2mkn
k= Zynexp)

m The naive wave of doing the transform would involve: for
each ¢y, one has to perform N complex multiplications
and (N — 1) additions —i.e. 2N — 1 complex operations —
however as complex multiplications are much more
expensive than complex additions, we only worry about
complex multiplications.

9/1

Fast Fourier Transform

m The Discrete Fourier Transform is defined as:

27kn
Cp = Zynexp)

m The naive wave of doing the transform would involve: for
each ¢y, one has to perform N complex multiplications
and (N — 1) additions —i.e. 2N — 1 complex operations —
however as complex multiplications are much more
expensive than complex additions, we only worry about
complex multiplications.

m Since there are NV ¢,'s so the total number of operations
is O(N?).

9/1

Fast Fourier Transform

m The Discrete Fourier Transform is defined as:

— 27kn
k= Z Yn exp(—i I)
n=0

m The naive wave of doing the transform would involve: for
each ¢y, one has to perform N complex multiplications
and (N — 1) additions —i.e. 2N — 1 complex operations —
however as complex multiplications are much more
expensive than complex additions, we only worry about
complex multiplications.

m Since there are NV ¢,'s so the total number of operations
is O(N?).
m Gauss came up with a trick to reduce the number of

operations. Often the FFT is attributed to Cooley and
Tukey — but Gauss used it in 1805 (when he was 28 yrs).

9/1

Fast Fourier Transform

m The Fast Fourier Transform algorithm is simplest to
understand when one applies it to cases when the number
of samples, N = 2™,

10/1

Fast Fourier Transform

m The Fast Fourier Transform algorithm is simplest to
understand when one applies it to cases when the number
of samples, N = 2™,

m Divide the sum into two equal sized groups — first group
containing terms where n is even and second group
containing terms where n is odd.

ck_zynexp
lN 1

= Z Yar exp(—

2rkn

)

1
27Tk(2).
N

27k(2r +1
Yor+1 exp(—z#)

10/1

Fast Fourier Transform

m The Fast Fourier Transform algorithm is simplest to
understand when one applies it to cases when the number
of samples, N = 2™,

m Divide the sum into two equal sized groups — first group
containing terms where n is even and second group
containing terms where n is odd.

o _zynexp
1N 1
= Z Yar exp(—

1N1

- Z Yor eXp

2rkn
N
IN—1
2ﬂk or E 2mk(2r+1
T T v e)
IN-1
2WkT 2rkr

)

)+ —i2nk/N Z Yori1 exp(
r=0 2

N iN

10/1

Fast Fourier Transform

m The Fast Fourier Transform algorithm is simplest to
understand when one applies it to cases when the number
of samples, N = 2™,

m Divide the sum into two equal sized groups — first group
containing terms where n is even and second group
containing terms where n is odd.

2ﬂkn
o = Z yn exp(—i=—)

1N 1 iN—1
27Tk;(2r) 27k(2r +1)
= Z Yar exp(— N —) + Yor+1 eXp(—ZT)
r=0
1N 1 2 I IN-1 9k
TRT —i2nk/N TRT
= Z Yor exp(— §y)+e ZO Yor41 €xp(—i §y)

EEk +e ZQﬂk/NOk

10/1

Fast Fourier Transform

However, thanks to the periodicity of the DFT:

EkJr%N = E Ok+%N = Oy

11/1

Fast Fourier Transform

However, thanks to the periodicity of the DFT:
EkJr%N = E Ok+%N = Oy
Therefore, we can write:

. Ek + 6_i27rk/NOk for 0 S k < %N
F T\ Byt e N0 Ly for NS K< N

11/1

Fast Fourier Transform

However, thanks to the periodicity of the DFT:
EkJr%N = E Ok+%N = Oy
Therefore, we can write:

. Ek + 6_i27rk/NOk for 0 S k < %N
F T\ Byt e N0 Ly for NS K< N

However we also know:

—i2m(k+3N)/N —i27k/N—ix

€ = e

— e—wre—z%rk/N

— _67i27rk/N

11/1

Fast Fourier Transform

Thenfor0§k<%N:

Cr :Ek + e—i27rk/NOk

—i27k/N

12/1

Fast Fourier Transform

Thenfor0§k<%N:

Ck :Ek + 6_127rk/NOk
—i2nk/N
Chpin =Bk —e" MO,

m This result, expresses the DFT of length N recursively in
terms of two DFTs of size N/2. In addition, there are N
multiplications (one for each ¢y).

12/1

Fast Fourier Transform

Thenfor0§k<%N:

Cr :Ek + 6—i27rk/NOk

—i27k/N

m This result, expresses the DFT of length N recursively in
terms of two DFTs of size N/2. In addition, there are N
multiplications (one for each ¢y).

m The algorithm gains its speed by re-using the results of
intermediate computations to compute multiple DFT
outputs.

12/1

Fast Fourier Transform

Thenfor0§k<%N:

Cr :Ek + 6—i27rk/NOk

—i27k/N

m This result, expresses the DFT of length N recursively in
terms of two DFTs of size N/2. In addition, there are N
multiplications (one for each ¢y).

m The algorithm gains its speed by re-using the results of

intermediate computations to compute multiple DFT
outputs.

m From the original N? multiplications, now one has
2 . . .
2(4)% = &&= multiplications.

12/1

Fast Fourier Transform

Thenfor0§k<%N:

Cr :Ek + 6—i27rk/NOk

—i27k/N

m This result, expresses the DFT of length N recursively in
terms of two DFTs of size N/2. In addition, there are N
multiplications (one for each ¢y).

m The algorithm gains its speed by re-using the results of
intermediate computations to compute multiple DFT
outputs.

m From the original N? multiplications, now one has

2(¥)? = 2% multiplications.

m This procedure can be recursively repeated — leading to a
scaling of O(N log, N).

12/1

Fast Fourier Transform

m N —2x (N/2)2+ N = N?/2+ N operations.

13/1

Fast Fourier Transform

m N —2x (N/2)2+ N = N?/2+ N operations.
BN —2x(2x(N/4)*+N/2)+ N =N?/4+2N
operations.

13/1

Fast Fourier Transform

m N —2x (N/2)2+ N = N?/2+ N operations.

BN —2x(2x(N/4)*+N/2)+ N =N?/4+2N
operations.

BN —2x(2x (2% (N/8)>+N/4)+N/2)+N = N?/8+3N
operations.

13/1

Fast Fourier Transform

m N —2x (N/2)2+ N = N?/2+ N operations.

BN —2x(2x(N/4)*+N/2)+ N =N?/4+2N
operations.

BN —2x(2x (2% (N/8)>+N/4)+N/2)+N = N?/8+3N
operations.

13/1

Fast Fourier Transform

m N —2x (N/2)2+ N = N?/2+ N operations.

BN —2x(2x(N/4)*+N/2)+ N =N?/4+2N
operations.

BN —2x(2x (2% (N/8)>+N/4)+N/2)+N = N?/8+3N
operations.

u ...

m N — N?/2™ + mN where m = log, N.

13/1

Fast Fourier Transform

m N —2x (N/2)2+ N = N?/2+ N operations.

BN —2x(2x(N/4)*+N/2)+ N =N?/4+2N
operations.

BN —2x(2x (2% (N/8)>+N/4)+N/2)+N = N?/8+3N
operations.

I

m N — N?/2™ + mN where m = log, N.

m N — N?/N + Nlogy N ~ O(Nlog, N).

13/1

Fast Fourier Transform

x(0} 2-peint
2(4) DFT Combine L
2-point
5 - DFT's e xmn
x2) = poit N
) pET Combine f—a ¥{3)
4-point
M , prry [X@
x! 2-point X(5)
x(5) DET Combine L X(5)
2-point 7
- DFT's — X{7)
x(3} 2-point
x(N DFT

14/1

Convolution

(f * gt / F(r) gt —7)d
=/oof(t—T)g(T>dT

The convolution theorem states that the Fourier transform of
a convolution of two functions is the pointwise product of their
Fourier transforms.

F{f g}t =F{f} Flg}
— fxg=F Y{F{f} Flg}}

15/1

Power Spectrum

m For a given signal, the power spectrum gives a plot of the
portion of a signal's power (energy per unit time) falling
within given frequency bins.

16/1

Power Spectrum

m For a given signal, the power spectrum gives a plot of the
portion of a signal's power (energy per unit time) falling
within given frequency bins.

m One method for estimating power spectral densities is
based on using a function called the periodogram. The
periodogram of an N-point sequence y,, is defined to be

I[k] = %|ck|2

16/1

Power Spectrum

m For a given signal, the power spectrum gives a plot of the
portion of a signal's power (energy per unit time) falling
within given frequency bins.

m One method for estimating power spectral densities is
based on using a function called the periodogram. The
periodogram of an N-point sequence y,, is defined to be

I[k] = %|ck|2

m It can be shown that the inverse transform of the
periodogram is the sample autocorrelation function.

16/1

Power Spectrum

m For a given signal, the power spectrum gives a plot of the
portion of a signal's power (energy per unit time) falling
within given frequency bins.

m One method for estimating power spectral densities is
based on using a function called the periodogram. The
periodogram of an N-point sequence y,, is defined to be

I[k] = %|ck|2

m It can be shown that the inverse transform of the
periodogram is the sample autocorrelation function.

m Parseval's theorem tells us:
N-1
val? = = S Jeel?
‘ N
n=

16/1

