
Discrete Cosine Transform.
Fast Fourier Transform.
Convolution.
Power spectrum.

1/1

Discrete Cosine Transform

If the function f(x) is even (i.e. symmetric) about the
midpoint (x = L

2
) then one can write the cosine series:

f(x) =
∞∑
k=0

αk cos(
2πkx

L
)

This might seem like a big limitation making the whole
cosine transform virtually useless – but this is not the case.

2/1

Discrete Cosine Transform

If the function f(x) is even (i.e. symmetric) about the
midpoint (x = L

2
) then one can write the cosine series:

f(x) =
∞∑
k=0

αk cos(
2πkx

L
)

This might seem like a big limitation making the whole
cosine transform virtually useless – but this is not the case.

2/1

Discrete Fourier Transform – reminder

We had made any function periodic – say if we are only
interested in a portion of this non periodic function over a
finite interval, 0 to L, we can just take that portion and
repeat it to create a periodic function.

3/1

Discrete Cosine Transform – even functions

If we are interested in the function in a finite region, we
can make it symmetric by adding to it a mirror image of
itself and then repeating it endlessly!

In practice, this is how the cosine transform is always used.
This also implies that the number of samples in the
transform is always even.

4/1

Discrete Cosine Transform – even functions

If we are interested in the function in a finite region, we
can make it symmetric by adding to it a mirror image of
itself and then repeating it endlessly!
In practice, this is how the cosine transform is always used.

This also implies that the number of samples in the
transform is always even.

4/1

Discrete Cosine Transform – even functions

If we are interested in the function in a finite region, we
can make it symmetric by adding to it a mirror image of
itself and then repeating it endlessly!
In practice, this is how the cosine transform is always used.
This also implies that the number of samples in the
transform is always even.

4/1

Discrete Cosine Transform (DCT)

Discrete Cosine Transform is a special case of Discrete Fourier
Transform.

ck =
N−1∑
n=0

yn exp(−i
2πkn

N
)

=

1
2
N∑

n=0

yn exp(−i
2πkn

N
) +

N−1∑
n= 1

2
N+1

yn exp(−i
2πkn

N
)

=

1
2
N∑

n=0

yn exp(−i
2πkn

N
) +

N−1∑
n= 1

2
N+1

yN−n exp(i
2πk(N − n)

N
)

Because the function is symmetric y0 = yN , y1 = yN−1, . . . and
ei2πk = 1 for all k ∈ Z

5/1

Discrete Cosine Transform (DCT)

Discrete Cosine Transform is a special case of Discrete Fourier
Transform.

ck =
N−1∑
n=0

yn exp(−i
2πkn

N
)

=

1
2
N∑

n=0

yn exp(−i
2πkn

N
) +

N−1∑
n= 1

2
N+1

yn exp(−i
2πkn

N
)

=

1
2
N∑

n=0

yn exp(−i
2πkn

N
) +

N−1∑
n= 1

2
N+1

yN−n exp(i
2πk(N − n)

N
)

Because the function is symmetric y0 = yN , y1 = yN−1, . . . and
ei2πk = 1 for all k ∈ Z

5/1

Discrete Cosine Transform (DCT)

Discrete Cosine Transform is a special case of Discrete Fourier
Transform.

ck =
N−1∑
n=0

yn exp(−i
2πkn

N
)

=

1
2
N∑

n=0

yn exp(−i
2πkn

N
) +

N−1∑
n= 1

2
N+1

yn exp(−i
2πkn

N
)

=

1
2
N∑

n=0

yn exp(−i
2πkn

N
) +

N−1∑
n= 1

2
N+1

yN−n exp(i
2πk(N − n)

N
)

Because the function is symmetric y0 = yN , y1 = yN−1, . . . and
ei2πk = 1 for all k ∈ Z

5/1

Discrete Cosine Transform (DCT)

Changing variables N − n→ n in the right hand expression:

ck =

1
2
N∑

n=0

yn exp(−i
2πkn

N
) +

1
2
N−1∑
n=1

yn exp(i
2πkn

N
)

=y0 + yN/2 cos

(
2πk(N/2)

N

)
+ 2

1
2
N−1∑
n=1

yn cos

(
2πkn

N

)
Normally the cosine transform is applied to real samples,
which implies that the coefficients ck will all be real as well (as
they are sums of real terms).

6/1

Discrete Cosine Transform (DCT)

Changing variables N − n→ n in the right hand expression:

ck =

1
2
N∑

n=0

yn exp(−i
2πkn

N
) +

1
2
N−1∑
n=1

yn exp(i
2πkn

N
)

=y0 + yN/2 cos

(
2πk(N/2)

N

)
+ 2

1
2
N−1∑
n=1

yn cos

(
2πkn

N

)

Normally the cosine transform is applied to real samples,
which implies that the coefficients ck will all be real as well (as
they are sums of real terms).

6/1

Discrete Cosine Transform (DCT)

Changing variables N − n→ n in the right hand expression:

ck =

1
2
N∑

n=0

yn exp(−i
2πkn

N
) +

1
2
N−1∑
n=1

yn exp(i
2πkn

N
)

=y0 + yN/2 cos

(
2πk(N/2)

N

)
+ 2

1
2
N−1∑
n=1

yn cos

(
2πkn

N

)
Normally the cosine transform is applied to real samples,
which implies that the coefficients ck will all be real as well (as
they are sums of real terms).

6/1

Discrete Cosine Transform (DCT)

As yn and ck are real, cN−r = c∗r = cr. The inverse transform:

yn =
1

N

[N−1∑
k=0

ck exp(i
2πkn

N
)

]

=
1

N

[1
2
N∑

k=0

ck exp(i
2πkn

N
) +

N−1∑
k= 1

2
N+1

ck exp(i
2πkn

N
)

]

=
1

N

[1
2
N∑

k=0

ck exp(i
2πkn

N
) +

N−1∑
k= 1

2
N+1

cN−k exp(−i
2π(N − k)n

N
)

]

=
1

N

[1
2
N∑

k=0

ck exp(i
2πkn

N
) +

1
2
N−1∑
k=1

ck exp(−i
2πkn

N
)

]

=
1

N

[
c0 + cN/2 cos

(
2π(N/2)n

N

)
+ 2

1
2
N−1∑
k=1

ck cos

(
2πkn

N

)]

7/1

Discrete Cosine Transform (DCT)

As yn and ck are real, cN−r = c∗r = cr. The inverse transform:

yn =
1

N

[N−1∑
k=0

ck exp(i
2πkn

N
)

]

=
1

N

[1
2
N∑

k=0

ck exp(i
2πkn

N
) +

N−1∑
k= 1

2
N+1

ck exp(i
2πkn

N
)

]

=
1

N

[1
2
N∑

k=0

ck exp(i
2πkn

N
) +

N−1∑
k= 1

2
N+1

cN−k exp(−i
2π(N − k)n

N
)

]

=
1

N

[1
2
N∑

k=0

ck exp(i
2πkn

N
) +

1
2
N−1∑
k=1

ck exp(−i
2πkn

N
)

]

=
1

N

[
c0 + cN/2 cos

(
2π(N/2)n

N

)
+ 2

1
2
N−1∑
k=1

ck cos

(
2πkn

N

)]

7/1

Discrete Cosine Transform (DCT)

As yn and ck are real, cN−r = c∗r = cr. The inverse transform:

yn =
1

N

[N−1∑
k=0

ck exp(i
2πkn

N
)

]

=
1

N

[1
2
N∑

k=0

ck exp(i
2πkn

N
) +

N−1∑
k= 1

2
N+1

ck exp(i
2πkn

N
)

]

=
1

N

[1
2
N∑

k=0

ck exp(i
2πkn

N
) +

N−1∑
k= 1

2
N+1

cN−k exp(−i
2π(N − k)n

N
)

]

=
1

N

[1
2
N∑

k=0

ck exp(i
2πkn

N
) +

1
2
N−1∑
k=1

ck exp(−i
2πkn

N
)

]

=
1

N

[
c0 + cN/2 cos

(
2π(N/2)n

N

)
+ 2

1
2
N−1∑
k=1

ck cos

(
2πkn

N

)]

7/1

Discrete Cosine Transform (DCT)

As yn and ck are real, cN−r = c∗r = cr. The inverse transform:

yn =
1

N

[N−1∑
k=0

ck exp(i
2πkn

N
)

]

=
1

N

[1
2
N∑

k=0

ck exp(i
2πkn

N
) +

N−1∑
k= 1

2
N+1

ck exp(i
2πkn

N
)

]

=
1

N

[1
2
N∑

k=0

ck exp(i
2πkn

N
) +

N−1∑
k= 1

2
N+1

cN−k exp(−i
2π(N − k)n

N
)

]

=
1

N

[1
2
N∑

k=0

ck exp(i
2πkn

N
) +

1
2
N−1∑
k=1

ck exp(−i
2πkn

N
)

]

=
1

N

[
c0 + cN/2 cos

(
2π(N/2)n

N

)
+ 2

1
2
N−1∑
k=1

ck cos

(
2πkn

N

)]

7/1

Discrete Cosine Transform (DCT)

As yn and ck are real, cN−r = c∗r = cr. The inverse transform:

yn =
1

N

[N−1∑
k=0

ck exp(i
2πkn

N
)

]

=
1

N

[1
2
N∑

k=0

ck exp(i
2πkn

N
) +

N−1∑
k= 1

2
N+1

ck exp(i
2πkn

N
)

]

=
1

N

[1
2
N∑

k=0

ck exp(i
2πkn

N
) +

N−1∑
k= 1

2
N+1

cN−k exp(−i
2π(N − k)n

N
)

]

=
1

N

[1
2
N∑

k=0

ck exp(i
2πkn

N
) +

1
2
N−1∑
k=1

ck exp(−i
2πkn

N
)

]

=
1

N

[
c0 + cN/2 cos

(
2π(N/2)n

N

)
+ 2

1
2
N−1∑
k=1

ck cos

(
2πkn

N

)]
7/1

Discrete Cosine Transform (DCT)

The forward and reverse transforms are actually the same
mathematical expression (but for the 1/N factor).

Thus, one can say that this transform is its own inverse.
There is another commonly used form of this transform
where the sample points are in the middle of the sample
interval.
A nice feature of this DCT is that unlike DFT, it does not
assume that the samples are periodic.
This is much better suited for non periodic functions as
there is no discontinuity introduced.
In principle, the discrete sine transform can also be
computed. However, the requirement of anti-symmetry
forces the function to be zero at either end of the range.
This does not happen often in real-world applications...

8/1

Discrete Cosine Transform (DCT)

The forward and reverse transforms are actually the same
mathematical expression (but for the 1/N factor).
Thus, one can say that this transform is its own inverse.

There is another commonly used form of this transform
where the sample points are in the middle of the sample
interval.
A nice feature of this DCT is that unlike DFT, it does not
assume that the samples are periodic.
This is much better suited for non periodic functions as
there is no discontinuity introduced.
In principle, the discrete sine transform can also be
computed. However, the requirement of anti-symmetry
forces the function to be zero at either end of the range.
This does not happen often in real-world applications...

8/1

Discrete Cosine Transform (DCT)

The forward and reverse transforms are actually the same
mathematical expression (but for the 1/N factor).
Thus, one can say that this transform is its own inverse.
There is another commonly used form of this transform
where the sample points are in the middle of the sample
interval.

A nice feature of this DCT is that unlike DFT, it does not
assume that the samples are periodic.
This is much better suited for non periodic functions as
there is no discontinuity introduced.
In principle, the discrete sine transform can also be
computed. However, the requirement of anti-symmetry
forces the function to be zero at either end of the range.
This does not happen often in real-world applications...

8/1

Discrete Cosine Transform (DCT)

The forward and reverse transforms are actually the same
mathematical expression (but for the 1/N factor).
Thus, one can say that this transform is its own inverse.
There is another commonly used form of this transform
where the sample points are in the middle of the sample
interval.
A nice feature of this DCT is that unlike DFT, it does not
assume that the samples are periodic.

This is much better suited for non periodic functions as
there is no discontinuity introduced.
In principle, the discrete sine transform can also be
computed. However, the requirement of anti-symmetry
forces the function to be zero at either end of the range.
This does not happen often in real-world applications...

8/1

Discrete Cosine Transform (DCT)

The forward and reverse transforms are actually the same
mathematical expression (but for the 1/N factor).
Thus, one can say that this transform is its own inverse.
There is another commonly used form of this transform
where the sample points are in the middle of the sample
interval.
A nice feature of this DCT is that unlike DFT, it does not
assume that the samples are periodic.
This is much better suited for non periodic functions as
there is no discontinuity introduced.

In principle, the discrete sine transform can also be
computed. However, the requirement of anti-symmetry
forces the function to be zero at either end of the range.
This does not happen often in real-world applications...

8/1

Discrete Cosine Transform (DCT)

The forward and reverse transforms are actually the same
mathematical expression (but for the 1/N factor).
Thus, one can say that this transform is its own inverse.
There is another commonly used form of this transform
where the sample points are in the middle of the sample
interval.
A nice feature of this DCT is that unlike DFT, it does not
assume that the samples are periodic.
This is much better suited for non periodic functions as
there is no discontinuity introduced.
In principle, the discrete sine transform can also be
computed. However, the requirement of anti-symmetry
forces the function to be zero at either end of the range.
This does not happen often in real-world applications...

8/1

Fast Fourier Transform

The Discrete Fourier Transform is defined as:

ck =
N−1∑
n=0

yn exp(−i
2πkn

N
)

The naive wave of doing the transform would involve: for
each ck, one has to perform N complex multiplications
and (N − 1) additions – i.e. 2N − 1 complex operations –
however as complex multiplications are much more
expensive than complex additions, we only worry about
complex multiplications.
Since there are N ck’s so the total number of operations
is O(N2).
Gauss came up with a trick to reduce the number of
operations. Often the FFT is attributed to Cooley and
Tukey – but Gauss used it in 1805 (when he was 28 yrs).

9/1

Fast Fourier Transform

The Discrete Fourier Transform is defined as:

ck =
N−1∑
n=0

yn exp(−i
2πkn

N
)

The naive wave of doing the transform would involve: for
each ck, one has to perform N complex multiplications
and (N − 1) additions – i.e. 2N − 1 complex operations –
however as complex multiplications are much more
expensive than complex additions, we only worry about
complex multiplications.

Since there are N ck’s so the total number of operations
is O(N2).
Gauss came up with a trick to reduce the number of
operations. Often the FFT is attributed to Cooley and
Tukey – but Gauss used it in 1805 (when he was 28 yrs).

9/1

Fast Fourier Transform

The Discrete Fourier Transform is defined as:

ck =
N−1∑
n=0

yn exp(−i
2πkn

N
)

The naive wave of doing the transform would involve: for
each ck, one has to perform N complex multiplications
and (N − 1) additions – i.e. 2N − 1 complex operations –
however as complex multiplications are much more
expensive than complex additions, we only worry about
complex multiplications.
Since there are N ck’s so the total number of operations
is O(N2).

Gauss came up with a trick to reduce the number of
operations. Often the FFT is attributed to Cooley and
Tukey – but Gauss used it in 1805 (when he was 28 yrs).

9/1

Fast Fourier Transform

The Discrete Fourier Transform is defined as:

ck =
N−1∑
n=0

yn exp(−i
2πkn

N
)

The naive wave of doing the transform would involve: for
each ck, one has to perform N complex multiplications
and (N − 1) additions – i.e. 2N − 1 complex operations –
however as complex multiplications are much more
expensive than complex additions, we only worry about
complex multiplications.
Since there are N ck’s so the total number of operations
is O(N2).
Gauss came up with a trick to reduce the number of
operations. Often the FFT is attributed to Cooley and
Tukey – but Gauss used it in 1805 (when he was 28 yrs).

9/1

Fast Fourier Transform

The Fast Fourier Transform algorithm is simplest to
understand when one applies it to cases when the number
of samples, N = 2m.

Divide the sum into two equal sized groups – first group
containing terms where n is even and second group
containing terms where n is odd.

ck =
N−1∑
n=0

yn exp(−i
2πkn

N
)

=

1
2
N−1∑
r=0

y2r exp(−i
2πk(2r)

N
) +

1
2
N−1∑
r=0

y2r+1 exp(−i
2πk(2r + 1)

N
)

=

1
2
N−1∑
r=0

y2r exp(−i
2πkr
1
2
N

) + e−i2πk/N

1
2
N−1∑
r=0

y2r+1 exp(−i
2πkr
1
2
N

)

≡Ek + e−i2πk/NOk

10/1

Fast Fourier Transform

The Fast Fourier Transform algorithm is simplest to
understand when one applies it to cases when the number
of samples, N = 2m.
Divide the sum into two equal sized groups – first group
containing terms where n is even and second group
containing terms where n is odd.

ck =
N−1∑
n=0

yn exp(−i
2πkn

N
)

=

1
2
N−1∑
r=0

y2r exp(−i
2πk(2r)

N
) +

1
2
N−1∑
r=0

y2r+1 exp(−i
2πk(2r + 1)

N
)

=

1
2
N−1∑
r=0

y2r exp(−i
2πkr
1
2
N

) + e−i2πk/N

1
2
N−1∑
r=0

y2r+1 exp(−i
2πkr
1
2
N

)

≡Ek + e−i2πk/NOk

10/1

Fast Fourier Transform

The Fast Fourier Transform algorithm is simplest to
understand when one applies it to cases when the number
of samples, N = 2m.
Divide the sum into two equal sized groups – first group
containing terms where n is even and second group
containing terms where n is odd.

ck =
N−1∑
n=0

yn exp(−i
2πkn

N
)

=

1
2
N−1∑
r=0

y2r exp(−i
2πk(2r)

N
) +

1
2
N−1∑
r=0

y2r+1 exp(−i
2πk(2r + 1)

N
)

=

1
2
N−1∑
r=0

y2r exp(−i
2πkr
1
2
N

) + e−i2πk/N

1
2
N−1∑
r=0

y2r+1 exp(−i
2πkr
1
2
N

)

≡Ek + e−i2πk/NOk

10/1

Fast Fourier Transform

The Fast Fourier Transform algorithm is simplest to
understand when one applies it to cases when the number
of samples, N = 2m.
Divide the sum into two equal sized groups – first group
containing terms where n is even and second group
containing terms where n is odd.

ck =
N−1∑
n=0

yn exp(−i
2πkn

N
)

=

1
2
N−1∑
r=0

y2r exp(−i
2πk(2r)

N
) +

1
2
N−1∑
r=0

y2r+1 exp(−i
2πk(2r + 1)

N
)

=

1
2
N−1∑
r=0

y2r exp(−i
2πkr
1
2
N

) + e−i2πk/N

1
2
N−1∑
r=0

y2r+1 exp(−i
2πkr
1
2
N

)

≡Ek + e−i2πk/NOk
10/1

Fast Fourier Transform

However, thanks to the periodicity of the DFT:

Ek+ 1
2
N = Ek Ok+ 1

2
N = Ok

Therefore, we can write:

ck =

{
Ek + e−i2πk/NOk for 0 ≤ k < 1

2
N

Ek− 1
2
N + e−i2πk/NOk− 1

2
N for 1

2
N ≤ k < N

However we also know:

e−i2π(k+
1
2
N)/N = e−i2πk/N−iπ

= e−iπe−i2πk/N

= −e−i2πk/N

11/1

Fast Fourier Transform

However, thanks to the periodicity of the DFT:

Ek+ 1
2
N = Ek Ok+ 1

2
N = Ok

Therefore, we can write:

ck =

{
Ek + e−i2πk/NOk for 0 ≤ k < 1

2
N

Ek− 1
2
N + e−i2πk/NOk− 1

2
N for 1

2
N ≤ k < N

However we also know:

e−i2π(k+
1
2
N)/N = e−i2πk/N−iπ

= e−iπe−i2πk/N

= −e−i2πk/N

11/1

Fast Fourier Transform

However, thanks to the periodicity of the DFT:

Ek+ 1
2
N = Ek Ok+ 1

2
N = Ok

Therefore, we can write:

ck =

{
Ek + e−i2πk/NOk for 0 ≤ k < 1

2
N

Ek− 1
2
N + e−i2πk/NOk− 1

2
N for 1

2
N ≤ k < N

However we also know:

e−i2π(k+
1
2
N)/N = e−i2πk/N−iπ

= e−iπe−i2πk/N

= −e−i2πk/N

11/1

Fast Fourier Transform

Then for 0 ≤ k < 1
2
N :

ck =Ek + e−i2πk/NOk

ck+ 1
2
N =Ek − e−i2πk/NOk

This result, expresses the DFT of length N recursively in
terms of two DFTs of size N/2. In addition, there are N
multiplications (one for each ck).
The algorithm gains its speed by re-using the results of
intermediate computations to compute multiple DFT
outputs.
From the original N2 multiplications, now one has
2(N

2
)2 = N2

2
multiplications.

This procedure can be recursively repeated – leading to a
scaling of O(N log2N).

12/1

Fast Fourier Transform

Then for 0 ≤ k < 1
2
N :

ck =Ek + e−i2πk/NOk

ck+ 1
2
N =Ek − e−i2πk/NOk

This result, expresses the DFT of length N recursively in
terms of two DFTs of size N/2. In addition, there are N
multiplications (one for each ck).

The algorithm gains its speed by re-using the results of
intermediate computations to compute multiple DFT
outputs.
From the original N2 multiplications, now one has
2(N

2
)2 = N2

2
multiplications.

This procedure can be recursively repeated – leading to a
scaling of O(N log2N).

12/1

Fast Fourier Transform

Then for 0 ≤ k < 1
2
N :

ck =Ek + e−i2πk/NOk

ck+ 1
2
N =Ek − e−i2πk/NOk

This result, expresses the DFT of length N recursively in
terms of two DFTs of size N/2. In addition, there are N
multiplications (one for each ck).
The algorithm gains its speed by re-using the results of
intermediate computations to compute multiple DFT
outputs.

From the original N2 multiplications, now one has
2(N

2
)2 = N2

2
multiplications.

This procedure can be recursively repeated – leading to a
scaling of O(N log2N).

12/1

Fast Fourier Transform

Then for 0 ≤ k < 1
2
N :

ck =Ek + e−i2πk/NOk

ck+ 1
2
N =Ek − e−i2πk/NOk

This result, expresses the DFT of length N recursively in
terms of two DFTs of size N/2. In addition, there are N
multiplications (one for each ck).
The algorithm gains its speed by re-using the results of
intermediate computations to compute multiple DFT
outputs.
From the original N2 multiplications, now one has
2(N

2
)2 = N2

2
multiplications.

This procedure can be recursively repeated – leading to a
scaling of O(N log2N).

12/1

Fast Fourier Transform

Then for 0 ≤ k < 1
2
N :

ck =Ek + e−i2πk/NOk

ck+ 1
2
N =Ek − e−i2πk/NOk

This result, expresses the DFT of length N recursively in
terms of two DFTs of size N/2. In addition, there are N
multiplications (one for each ck).
The algorithm gains its speed by re-using the results of
intermediate computations to compute multiple DFT
outputs.
From the original N2 multiplications, now one has
2(N

2
)2 = N2

2
multiplications.

This procedure can be recursively repeated – leading to a
scaling of O(N log2N).

12/1

Fast Fourier Transform

N → 2× (N/2)2 +N = N2/2 +N operations.

N → 2× (2× (N/4)2 +N/2) +N = N2/4 + 2N
operations.
N → 2×(2×(2×(N/8)2+N/4)+N/2)+N = N2/8+3N
operations.
. . .

N → N2/2m +mN where m = log2N .
N → N2/N +N log2N ∼ O(N log2N).

13/1

Fast Fourier Transform

N → 2× (N/2)2 +N = N2/2 +N operations.
N → 2× (2× (N/4)2 +N/2) +N = N2/4 + 2N
operations.

N → 2×(2×(2×(N/8)2+N/4)+N/2)+N = N2/8+3N
operations.
. . .

N → N2/2m +mN where m = log2N .
N → N2/N +N log2N ∼ O(N log2N).

13/1

Fast Fourier Transform

N → 2× (N/2)2 +N = N2/2 +N operations.
N → 2× (2× (N/4)2 +N/2) +N = N2/4 + 2N
operations.
N → 2×(2×(2×(N/8)2+N/4)+N/2)+N = N2/8+3N
operations.

. . .

N → N2/2m +mN where m = log2N .
N → N2/N +N log2N ∼ O(N log2N).

13/1

Fast Fourier Transform

N → 2× (N/2)2 +N = N2/2 +N operations.
N → 2× (2× (N/4)2 +N/2) +N = N2/4 + 2N
operations.
N → 2×(2×(2×(N/8)2+N/4)+N/2)+N = N2/8+3N
operations.
. . .

N → N2/2m +mN where m = log2N .
N → N2/N +N log2N ∼ O(N log2N).

13/1

Fast Fourier Transform

N → 2× (N/2)2 +N = N2/2 +N operations.
N → 2× (2× (N/4)2 +N/2) +N = N2/4 + 2N
operations.
N → 2×(2×(2×(N/8)2+N/4)+N/2)+N = N2/8+3N
operations.
. . .

N → N2/2m +mN where m = log2N .

N → N2/N +N log2N ∼ O(N log2N).

13/1

Fast Fourier Transform

N → 2× (N/2)2 +N = N2/2 +N operations.
N → 2× (2× (N/4)2 +N/2) +N = N2/4 + 2N
operations.
N → 2×(2×(2×(N/8)2+N/4)+N/2)+N = N2/8+3N
operations.
. . .

N → N2/2m +mN where m = log2N .
N → N2/N +N log2N ∼ O(N log2N).

13/1

Fast Fourier Transform

14/1

Convolution

(f ∗ g)(t) =
∫ ∞
−∞

f(τ) g(t− τ) dτ

=

∫ ∞
−∞

f(t− τ) g(τ) dτ

The convolution theorem states that the Fourier transform of
a convolution of two functions is the pointwise product of their
Fourier transforms.

F{f ∗ g} = F{f} · F{g}
=⇒ f ∗ g = F−1

{
F{f} · F{g}

}
15/1

Power Spectrum

For a given signal, the power spectrum gives a plot of the
portion of a signal’s power (energy per unit time) falling
within given frequency bins.

One method for estimating power spectral densities is
based on using a function called the periodogram. The
periodogram of an N-point sequence yn is defined to be

I[k] =
1

N

∣∣ck∣∣2
It can be shown that the inverse transform of the
periodogram is the sample autocorrelation function.
Parseval’s theorem tells us:

N−1∑
n=0

|yn|2 =
1

N

N−1∑
k=0

|ck|2

16/1

Power Spectrum

For a given signal, the power spectrum gives a plot of the
portion of a signal’s power (energy per unit time) falling
within given frequency bins.
One method for estimating power spectral densities is
based on using a function called the periodogram. The
periodogram of an N-point sequence yn is defined to be

I[k] =
1

N

∣∣ck∣∣2

It can be shown that the inverse transform of the
periodogram is the sample autocorrelation function.
Parseval’s theorem tells us:

N−1∑
n=0

|yn|2 =
1

N

N−1∑
k=0

|ck|2

16/1

Power Spectrum

For a given signal, the power spectrum gives a plot of the
portion of a signal’s power (energy per unit time) falling
within given frequency bins.
One method for estimating power spectral densities is
based on using a function called the periodogram. The
periodogram of an N-point sequence yn is defined to be

I[k] =
1

N

∣∣ck∣∣2
It can be shown that the inverse transform of the
periodogram is the sample autocorrelation function.

Parseval’s theorem tells us:
N−1∑
n=0

|yn|2 =
1

N

N−1∑
k=0

|ck|2

16/1

Power Spectrum

For a given signal, the power spectrum gives a plot of the
portion of a signal’s power (energy per unit time) falling
within given frequency bins.
One method for estimating power spectral densities is
based on using a function called the periodogram. The
periodogram of an N-point sequence yn is defined to be

I[k] =
1

N

∣∣ck∣∣2
It can be shown that the inverse transform of the
periodogram is the sample autocorrelation function.
Parseval’s theorem tells us:

N−1∑
n=0

|yn|2 =
1

N

N−1∑
k=0

|ck|2

16/1

