

- Fourier Transforms.
- Discrete Fourier Transform.

- The Fourier transform is one of the most useful and most widely used tool in physics – both traditional and computational.

- The Fourier transform is one of the most useful and most widely used tool in physics – both traditional and computational.
- Allows one to break down functions/signals into their component parts and analyze, smooth or filter them.

- The Fourier transform is one of the most useful and most widely used tool in physics – both traditional and computational.
- Allows one to break down functions/signals into their component parts and analyze, smooth or filter them.
- Also allows one to perform certain kinds of calculations and solve certain differential equations.

Fourier Series

Any periodic function $f(x)$ defined on a finite interval $0 \leq x \leq L$ can be written as a Fourier series (assuming that the function is bounded and has at most a finite number of discontinuities).

Fourier Series

Any periodic function $f(x)$ defined on a finite interval $0 \leq x \leq L$ can be written as a Fourier series (assuming that the function is bounded and has at most a finite number of discontinuities).

- If the function is even (i.e. symmetric) about the midpoint ($x = \frac{L}{2}$) then one can write the cosine series:

$$f(x) = \sum_{k=0}^{\infty} \alpha_k \cos\left(\frac{2\pi k x}{L}\right)$$

Fourier Series

Any periodic function $f(x)$ defined on a finite interval $0 \leq x \leq L$ can be written as a Fourier series (assuming that the function is bounded and has at most a finite number of discontinuities).

- If the function is even (i.e. symmetric) about the midpoint ($x = \frac{L}{2}$) then one can write the cosine series:

$$f(x) = \sum_{k=0}^{\infty} \alpha_k \cos\left(\frac{2\pi k x}{L}\right)$$

- If the function is odd (i.e. antisymmetric) about the midpoint ($x = \frac{L}{2}$) then one can write the sine series:

$$f(x) = \sum_{k=1}^{\infty} \beta_k \sin\left(\frac{2\pi k x}{L}\right)$$

Fourier Series – periodic vs non periodic

- For a general function (with no special symmetry), one can write the series:

$$f(x) = \sum_{k=-\infty}^{\infty} \gamma_k \exp\left(i \frac{2\pi k x}{L}\right)$$

- For a general function (with no special symmetry), one can write the series:

$$f(x) = \sum_{k=-\infty}^{\infty} \gamma_k \exp\left(i \frac{2\pi k x}{L}\right)$$

- The Fourier series can only be used for periodic functions (ie the function in 0 to L is repeated in both directions).

- For a general function (with no special symmetry), one can write the series:

$$f(x) = \sum_{k=-\infty}^{\infty} \gamma_k \exp\left(i \frac{2\pi k x}{L}\right)$$

- The Fourier series can only be used for periodic functions (ie the function in 0 to L is repeated in both directions).
- If the function is not periodic, and we are only interested in a portion of this non periodic function over a finite interval, 0 to L, we can just take that portion and repeat it to create a periodic function!

- For a general function (with no special symmetry), one can write the series:

$$f(x) = \sum_{k=-\infty}^{\infty} \gamma_k \exp\left(i \frac{2\pi k x}{L}\right)$$

- The Fourier series can only be used for periodic functions (ie the function in 0 to L is repeated in both directions).
- If the function is not periodic, and we are only interested in a portion of this non periodic function over a finite interval, 0 to L, we can just take that portion and repeat it to create a periodic function!
- Then the Fourier coefficients will only give the correct information about the function in the interval 0 to L. Outside this interval, the function will be just repeated (and may not have anything to do with the original function).

Fourier Series – coefficients

The coefficients γ_k are in general complex:

The coefficients γ_k are in general complex:

$$\int_0^L f(x) \exp\left(-i\frac{2\pi k x}{L}\right) dx = \sum_{k'=-\infty}^{\infty} \gamma_{k'} \int_0^L \exp\left(i\frac{2\pi(k' - k)x}{L}\right) dx$$

The coefficients γ_k are in general complex:

$$\int_0^L f(x) \exp\left(-i\frac{2\pi k x}{L}\right) dx = \sum_{k'=-\infty}^{\infty} \gamma_{k'} \int_0^L \exp\left(i\frac{2\pi(k' - k)x}{L}\right) dx$$

If $k' \neq k$:

$$\begin{aligned} \int_0^L \exp\left(i\frac{2\pi(k' - k)x}{L}\right) dx &= \frac{L}{i2\pi(k' - k)} \left[\exp\left(i\frac{2\pi(k' - k)x}{L}\right) \right]_0^L \\ &= \frac{L}{i2\pi(k' - k)} [e^{i2\pi(k' - k)} - 1] \\ &= 0 \end{aligned}$$

For $k' = k$:

$$\int_0^L f(x) \exp(-i \frac{2\pi k x}{L}) dx = L \gamma_k$$

For $k' = k$:

$$\int_0^L f(x) \exp(-i \frac{2\pi k x}{L}) dx = L \gamma_k$$

$$\gamma_k = \frac{1}{L} \int_0^L f(x) \exp(-i \frac{2\pi k x}{L}) dx$$

For $k' = k$:

$$\int_0^L f(x) \exp(-i \frac{2\pi k x}{L}) dx = L \gamma_k$$

$$\gamma_k = \frac{1}{L} \int_0^L f(x) \exp(-i \frac{2\pi k x}{L}) dx$$

Thus, given a function $f(x)$, we can find the Fourier coefficients γ_k , or given the coefficients, we can find the function $f(x)$ – we can go back and forth freely between the function and the Fourier coefficients.

Discrete Fourier Transform (DFT)

- For some functions $f(x)$, the Fourier coefficients can be determined analytically.

- For some functions $f(x)$, the Fourier coefficients can be determined analytically.
- There are, however, many cases where this is not doable – the integral is not doable because the function is too complicated or the function $f(x)$ may not even be known in analytic form (for eg. if it is a signal measured in the laboratory experiment).

- For some functions $f(x)$, the Fourier coefficients can be determined analytically.
- There are, however, many cases where this is not doable – the integral is not doable because the function is too complicated or the function $f(x)$ may not even be known in analytic form (for eg. if it is a signal measured in the laboratory experiment).
- In such cases, the integral can be evaluated numerically.

Discrete Fourier Transform (DFT)

Applying the trapezoidal rule for integration (N slices of width $h = L/N$) to calculate γ_k :

$$\gamma_k = \frac{1}{L} \frac{L}{N} \left[\frac{f(0)}{2} + \frac{f(L)}{2} + \sum_{n=1}^{N-1} f(x_n) \exp\left(-i \frac{2\pi k x_n}{L}\right) \right]$$

where $x_n = \frac{n}{N} L$

Discrete Fourier Transform (DFT)

Applying the trapezoidal rule for integration (N slices of width $h = L/N$) to calculate γ_k :

$$\gamma_k = \frac{1}{L} \frac{L}{N} \left[\frac{f(0)}{2} + \frac{f(L)}{2} + \sum_{n=1}^{N-1} f(x_n) \exp\left(-i \frac{2\pi k x_n}{L}\right) \right]$$

where $x_n = \frac{n}{N} L$

However, as $f(x)$ is periodic, $f(L) = f(0)$:

$$\gamma_k = \frac{1}{N} \left[\sum_{n=0}^{N-1} f(x_n) \exp\left(-i \frac{2\pi k x_n}{L}\right) \right]$$

Discrete Fourier Transform (DFT)

Applying the trapezoidal rule for integration (N slices of width $h = L/N$) to calculate γ_k :

$$\gamma_k = \frac{1}{L} \frac{L}{N} \left[\frac{f(0)}{2} + \frac{f(L)}{2} + \sum_{n=1}^{N-1} f(x_n) \exp\left(-i \frac{2\pi k x_n}{L}\right) \right]$$

where $x_n = \frac{n}{N} L$

However, as $f(x)$ is periodic, $f(L) = f(0)$:

$$\gamma_k = \frac{1}{N} \left[\sum_{n=0}^{N-1} f(x_n) \exp\left(-i \frac{2\pi k x_n}{L}\right) \right]$$

This formula can be used to evaluate the coefficients on a computer. A simpler way to write this is as:

$$\gamma_k = \frac{1}{N} \left[\sum_{n=0}^{N-1} y_n \exp\left(-i \frac{2\pi k n}{N}\right) \right]$$

where $y_n = f(x_n)$

Discrete Fourier Transform (DFT)

$$\gamma_k = \frac{1}{N} \sum_{n=0}^{N-1} y_n \exp\left(-i \frac{2\pi k n}{N}\right)$$

This sum is known as the discrete fourier transform (DFT).

Discrete Fourier Transform (DFT)

$$\gamma_k = \frac{1}{N} \sum_{n=0}^{N-1} y_n \exp\left(-i \frac{2\pi k n}{N}\right)$$

This sum is known as the discrete fourier transform (DFT).
Similarly one can define:

$$c_k = \sum_{n=0}^{N-1} y_n \exp\left(-i \frac{2\pi k n}{N}\right)$$

Discrete Fourier Transform (DFT)

$$\gamma_k = \frac{1}{N} \sum_{n=0}^{N-1} y_n \exp\left(-i \frac{2\pi k n}{N}\right)$$

This sum is known as the discrete fourier transform (DFT).
Similarly one can define:

$$c_k = \sum_{n=0}^{N-1} y_n \exp\left(-i \frac{2\pi k n}{N}\right)$$

The quantities γ_k and c_k only differ by the constant $1/N$ factor. For our purpose they are both equal, and we define the latter as the definition of DFT.

Discrete Fourier Transform (DFT)

So far, we have described the results of using Trapezoidal rule for the integral.. However, in principle, this is exact!:

Discrete Fourier Transform (DFT)

So far, we have described the results of using Trapezoidal rule for the integral.. However, in principle, this is exact!:

$$\begin{aligned} \sum_{k=0}^{N-1} c_k \exp\left(i \frac{2\pi k n}{N}\right) &= \sum_{k=0}^{N-1} \sum_{n'=0}^{N-1} y_{n'} \exp\left(-i \frac{2\pi k n'}{N}\right) \exp\left(i \frac{2\pi k n}{N}\right) \\ &= \sum_{n'=0}^{N-1} y_{n'} \sum_{k=0}^{N-1} \exp\left(i \frac{2\pi k(n' - n)}{N}\right) \\ &= Ny_n \quad \text{assuming} \quad 0 \leq n \leq N \end{aligned}$$

Discrete Fourier Transform (DFT)

So far, we have described the results of using Trapezoidal rule for the integral.. However, in principle, this is exact!:

$$\begin{aligned} \sum_{k=0}^{N-1} c_k \exp\left(i \frac{2\pi k n}{N}\right) &= \sum_{k=0}^{N-1} \sum_{n'=0}^{N-1} y_{n'} \exp\left(-i \frac{2\pi k n'}{N}\right) \exp\left(i \frac{2\pi k n}{N}\right) \\ &= \sum_{n'=0}^{N-1} y_{n'} \sum_{k=0}^{N-1} \exp\left(i \frac{2\pi k(n' - n)}{N}\right) \\ &= Ny_n \quad \text{assuming} \quad 0 \leq n \leq N \end{aligned}$$

Equivalently,

$$y_n = \frac{1}{N} \sum_{k=0}^{N-1} c_k \exp\left(i \frac{2\pi k n}{N}\right)$$

This is called the "Inverse Discrete Fourier Transform."

Discrete Fourier Transform (DFT)

- This inverse transform is the counterpart to the "forward" transform.

Discrete Fourier Transform (DFT)

- This inverse transform is the counterpart to the "forward" transform.
- It tells us given the coefficients c_k , we can recover the values of the sample y_n they came from "exactly"!

- This inverse transform is the counterpart to the "forward" transform.
- It tells us given the coefficients c_k , we can recover the values of the sample y_n they came from "exactly"!
- Thus both c_k and y_n give a complete representation of the data and we can move from one to the other without loosing any detail.

- This inverse transform is the counterpart to the "forward" transform.
- It tells us given the coefficients c_k , we can recover the values of the sample y_n they came from "exactly"!
- Thus both c_k and y_n give a complete representation of the data and we can move from one to the other without loosing any detail.
- It is important to appreciate that unlike the original Fourier series, the discrete version only gives us the sample values at $y_n = f(x_n)$. It tells us nothing about the value of the function $f(x)$ in between the points.

- This inverse transform is the counterpart to the "forward" transform.
- It tells us given the coefficients c_k , we can recover the values of the sample y_n they came from "exactly"!
- Thus both c_k and y_n give a complete representation of the data and we can move from one to the other without loosing any detail.
- It is important to appreciate that unlike the original Fourier series, the discrete version only gives us the sample values at $y_n = f(x_n)$. It tells us nothing about the value of the function $f(x)$ in between the points.
- So, two different functions with same values at the sample points will have the same DFT – no matter what they do in between the points!

DFT for real functions

Suppose all the y_n are real and consider the value of c_k for some k that is less than N but greater than $\frac{N}{2}$.

Suppose all the y_n are real and consider the value of c_k for some k that is less than N but greater than $\frac{N}{2}$.
We can write $k = N - r$ with $1 \leq r \leq \frac{N}{2}$

Suppose all the y_n are real and consider the value of c_k for some k that is less than N but greater than $\frac{N}{2}$.
We can write $k = N - r$ with $1 \leq r \leq \frac{N}{2}$

$$\begin{aligned}c_{N-r} &= \sum_{n=0}^{N-1} y_n \exp\left(-i\frac{2\pi(N-r)n}{N}\right) \\&= \sum_{n=0}^{N-1} y_n \exp(-i2\pi n) \exp\left(-i\frac{2\pi rn}{N}\right) \\&= \sum_{n=0}^{N-1} y_n \exp\left(-i\frac{2\pi rn}{N}\right) = c_r^*\end{aligned}$$

Suppose all the y_n are real and consider the value of c_k for some k that is less than N but greater than $\frac{N}{2}$.
We can write $k = N - r$ with $1 \leq r \leq \frac{N}{2}$

$$\begin{aligned}c_{N-r} &= \sum_{n=0}^{N-1} y_n \exp\left(-i\frac{2\pi(N-r)n}{N}\right) \\&= \sum_{n=0}^{N-1} y_n \exp(-i2\pi n) \exp\left(-i\frac{2\pi rn}{N}\right) \\&= \sum_{n=0}^{N-1} y_n \exp\left(-i\frac{2\pi rn}{N}\right) = c_r^*\end{aligned}$$

Thus: $c_{N-1} = c_1^*$ $c_{N-2} = c_2^*$ and so forth. That means that Fourier coefficients c_k of a real function only has to be calculated for $0 \leq k \leq \frac{N}{2}$.

One thing to notice about the DFT is that we can shift the sample points along the x -axis, and not much changes.

Suppose:

$$x'_n = x_n + \Delta = \frac{n}{N}L + \Delta$$

One thing to notice about the DFT is that we can shift the sample points along the x -axis, and not much changes.

Suppose:

$$x'_n = x_n + \Delta = \frac{n}{N}L + \Delta$$

Then the DFT is:

$$\begin{aligned} c_k &= \sum_{n=0}^{N-1} f(x_n + \Delta) \exp\left(-i\frac{2\pi k(x_n + \Delta)}{L}\right) \\ &= \exp\left(-i\frac{2\pi k\Delta}{L}\right) \sum_{n=0}^{N-1} f(x'_n) \exp\left(-i\frac{2\pi kx_n}{L}\right) \\ &= \exp\left(-i\frac{2\pi k\Delta}{L}\right) \sum_{n=0}^{N-1} y'_n \exp\left(-i\frac{2\pi kn}{N}\right) \end{aligned}$$

$$c_k = \exp\left(-i\frac{2\pi k \Delta}{L}\right) \sum_{n=0}^{N-1} y'_n \exp\left(-i\frac{2\pi k n}{N}\right)$$

$$c_k = \exp\left(-i\frac{2\pi k \Delta}{L}\right) \sum_{n=0}^{N-1} y'_n \exp\left(-i\frac{2\pi k n}{N}\right)$$

But this is the same as the original DFT except for a (k-dependent) phase factor. Thus the DFT is really independent of where we choose to place the samples – only the coefficients change by a phase factor.

Two-dimensional Fourier Transforms

Functions of two variables $f(x, y)$ can also be Fourier transformed, using a two dimensional Fourier transform. This simply means that one first transform with respect to one variable and then the other!

Two-dimensional Fourier Transforms

Functions of two variables $f(x, y)$ can also be Fourier transformed, using a two dimensional Fourier transform. This simply means that one first transform with respect to one variable and then the other!

Suppose that we have an $M \times N$ grid points of samples y_{mn} . We first transform on each of the M rows:

$$c'_{ml} = \sum_{n=0}^{N-1} y_{mn} \exp \left(-i \frac{2\pi l n}{N} \right)$$

Two-dimensional Fourier Transforms

Functions of two variables $f(x, y)$ can also be Fourier transformed, using a two dimensional Fourier transform. This simply means that one first transform with respect to one variable and then the other!

Suppose that we have an $M \times N$ grid points of samples y_{mn} . We first transform on each of the M rows:

$$c'_{ml} = \sum_{n=0}^{N-1} y_{mn} \exp \left(-i \frac{2\pi ln}{N} \right)$$

Then we take the l^{th} coefficient of each row and Fourier transform them :

$$c_{kl} = \sum_{m=0}^{M-1} c'_{ml} \exp \left(-i \frac{2\pi km}{M} \right)$$

Alternatively, we can write a single expression for the complete Fourier transform in two dimensions:

$$c_{kl} = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} y_{mn} \exp \left[-i2\pi \left(\frac{ln}{N} + \frac{km}{M} \right) \right]$$

Alternatively, we can write a single expression for the complete Fourier transform in two dimensions:

$$c_{kl} = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} y_{mn} \exp \left[-i2\pi \left(\frac{ln}{N} + \frac{km}{M} \right) \right]$$

The corresponding inverse transform is:

$$y_{mn} = \sum_{k=0}^{M-1} \sum_{l=0}^{N-1} c_{kl} \exp \left[i2\pi \left(\frac{ln}{N} + \frac{km}{M} \right) \right]$$