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Fourier Transforms

m The Fourier transform is one of the most useful and most
widely used tool in physics — both traditional and
computational.

m Allows one to break down functions/signals into their
component parts and analyze, smooth or filter them.

m Also allows one to perform certain kinds of calculations
and solve certain differential equations.
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Fourier Series

Any periodic function f(z) defined on a finite interval

0 <z < L can be written as a Fourier series (assuming that
the function is bounded and has at most a finite number of
discontinuities).
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Fourier Series

Any periodic function f(z) defined on a finite interval
0 <z < L can be written as a Fourier series (assuming that
the function is bounded and has at most a finite number of
discontinuities).
m If the function is even (i.e. symmetric) about the
midpoint (z = £) then one can write the cosine series:

2rkx

f@) = ancos( =)

m If the function is odd (i.e. antisymmetric) about the
midpoint (z = L) then one can write the sine series:

> 2rkx

f(x) =" Brsin( 7
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Fourier Series — periodic vs non periodic

m For a general function (with no special symmetry), one
can write the series:
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m If the function in not periodic, and we are only interested
in a portion of this non periodic function over a finite
interval, 0 to L, we can just take that portion and repeat
it to create a periodic function!
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Fourier Series — periodic vs non periodic

m For a general function (with no special symmetry), one
can write the series:

fl@)="> wexp(i

k=—00

2rkx

)

m The Fourier series can only be used for periodic functions
(ie the function in 0 to L is repeated in both directions).

m If the function in not periodic, and we are only interested
in a portion of this non periodic function over a finite
interval, 0 to L, we can just take that portion and repeat
it to create a periodic function!

m Then the Fourier coefficients will only give the correct
information about the function in the interval 0 to L.
Outside this interval, the function will be just repeated
(and may not have anything to do with the original

function.
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Fourier Series — coefficients

The coefficients ~, are in general complex:

L 2mka > L 2n(k — k)
/0 f(z)exp(—i 7 Ydx = k,:Z_OO 'yk//o exp(zf)dﬂc
It &' # k:
Lo on(k — k) L 2n(k — k)z ]"
/0 eXp(zf)dx = m {exp(zf) .
L o (1
~ i2n(k — k) [+ —1]
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Fourier Series — coefficients

For k' = k:

2rkx

/0 F(@) exp(—i— L ydo = Loy
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Fourier Series — coefficients

For k' = k:

)dlf = Ly

/f ) exp(—

L wkx
:%/O f(x)exp(—zgliC )dx

Thus, given a function f(x), we can find the Fourier
coefficients v, or given the coefficients, we can find the
function f(z) — we can go back and forth freely between the
function and the Fourier coefficients.
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Discrete Fourier Transform (DFT)

m For some functions f(z), the Fourier coefficients can be
determined analytically.
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Discrete Fourier Transform (DFT)

m For some functions f(z), the Fourier coefficients can be
determined analytically.

m There are, however, many cases where this is not doable —
the integral is not doable because the function is too
complicated or the function f(x) maynot even be known
in analytic form (for eg. if it is a signal measured in the
laboratory experiment).

m In such cases, the integral can be evaluated numerically.
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Discrete Fourier Transform (DFT)

Applying the trapezoidal rule for integration (N slices of width
h = L/N) to calculate 7:

LL[f(0 ) = orka,,
we x|y T > flan) expl—i=p )
where 1, = &L
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h = L/N) to calculate 7:
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where 1, = &L
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Discrete Fourier Transform (DFT)

Applying the trapezoidal rule for integration (N slices of width
h = L/N) to calculate 7:

_LLTAO) | f@) R 2k,
- 155+ 2 flan)exp(—=7 )
where z,, = ~L

However, as f(z) is periodic, f(L) = f(0):

- 5[

This formula can be used to evaluate the coefficients on a
computer. A simpler way to write this is as:

{Z 4 expl 27rkn)}

where Yn = f(xn)
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Discrete Fourier Transform (DFT)

2ﬂkn
Z Y exp(—i=——)

This sum is known as the dicrete fourier transform (DFT).
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Discrete Fourier Transform (DFT)

2ﬂkn
Z Y exp(—i=——)

This sum is known as the dicrete fourier transform (DFT).
Similarly one can define:

QWkn
Cr = Zyn eXp )

The quantities 74 and ¢, only differ by the constant 1/N
factor. For our purpose they are both equal, and we define the
latter as the definition of DFT.
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So far, we have described the results of using Trapezoidal rule
for the integral.. However, in principle, this is exact!:
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N—-1 N—1N-1
2 k: 2 k: 2k
go e expl(irt) go §0an exp(—i " ) exp(i 7;Vn)
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Discrete Fourier Transform (DFT)

So far, we have described the results of using Trapezoidal rule
for the integral.. However, in principle, this is exact!:

Nz_l cx expli 27rk:n Zl Nzl Yo €xp(— 27rk:n ) exp(i 27;\1;:71)
k=0 k=0 n/=0

_ Nzlyn Zexp ( 27k(n —n))

= Nyn assuming 0<n<N
Equivalently,

N-1
1 2mkn
ynzﬁkggckexp(Z )

This is called the "Inverse Discrete Fourier Transform."
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Discrete Fourier Transform (DFT)

m This inverse transform is the counterpart to the "forward"
transform.
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Discrete Fourier Transform (DFT)

m This inverse transform is the counterpart to the "forward"
transform.

m |t tells us given the coefficients ¢, we can recover the
values of the sample y,, they came from "exactly"!

m Thus both ¢, and y,, give a complete representation of
the data and we can move from one to the other without
loosing any detail.

m It is important to appreciate that unlike the original
Fourier series, the discrete version only gives us the
sample values at y,, = f(z,). It tells us nothing about the
value of the function f(z) in between the points.

m So, two different functions with same values at the sample

points will have the same DFT — no matter what they do
in between the points!
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DFT for real functions

Suppose all the y, are real and consider the value of ¢, for

some k that is less than N but greater than %
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DFT for real functions

Suppose all the y, are real and consider the value of ¢, for
some k that is less than N but greater than %
We can write k = N — r with 1§r§%

«— < 2m(N —r)n)
CN—r= Y Ynexp| —i—————

N
n=0
— 2mrn
- . —i2 i
nzoy exp(—i27mn) exp( i~ )
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DFT for real functions

Suppose all the y, are real and consider the value of ¢, for
some k that is less than N but greater than %
We can write k = N — r with 1§r§%

27(N —r)n
CN_y = exp| —i———
N—r Yn €XP N
n=0
— 2mrn
= . —i2 i
nzoy exp(—i27mn) exp( i~ )
= 21rn .
= nexp | —i =c)
Yn €XP N

o

n=

Thus: ¢y_1 = ¢} cxy_2 = ¢ and so forth. That means that
Fourier coefficients ¢;, of a real function only has to be
calculated for 0 < k < .

12/16



Discrete Fourier Transform — positions of sample points

One thing to notice about the DFT is that we can shift the
sample points along the z-axis, and not much changes.
Suppose:

n
L=z, +A=—L+A
Ty, = Tp + N +
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Discrete Fourier Transform — positions of sample points

One thing to notice about the DFT is that we can shift the
sample points along the z-axis, and not much changes.
Suppose:

n
L=z, +A=—L+A
Ty, = Tp + N +

Then the DFT is:

27k(x, + A)
crp = 2 flzn, + A)exp ( — ZT)
27kA\ = , 2k,
—exp(—z 7 ) nz%f@n)exp(—z 7 >
oo [ i27rk:A — F oo [ Z,27rk:n
- p L ot yn p N
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Discrete Fourier Transform — positions of sample points

27kA\ v , 2mkn
- _ _
Cp = exp =7 2 Yy, €XP =
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Discrete Fourier Transform — positions of sample points

27kA t= 2rkn
ck:exp(—z 7 );ynexp(—z N)

But this is the same as the original DFT except for a
(k-dependent) phase factor. Thus the DFT is really
independent of where we choose to place the samples — only
the coefficients change by a phase factor.
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Two-dimensional Fourier Transforms

Functions of two variables f(x,y) can also be Fourier
transformed, using a two dimensional Fourier transform. This

simply means that one first transform with respect to one
variable and then the other!
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Suppose that we have an M x N grid points of samples ¥,,,.
We first transform on each of the M rows:

i, 2min
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Two-dimensional Fourier Transforms

Functions of two variables f(x,y) can also be Fourier
transformed, using a two dimensional Fourier transform. This
simply means that one first transform with respect to one
variable and then the other!

Suppose that we have an M x N grid points of samples ¥,,,.
We first transform on each of the M rows:

= 2min
Cont = Zymnexp(—i N )

n=0

Then we take the [*" coefficient of each row and Fourier
transform them :

= 2rkm
Ckl = Zcznlexp<_i Vi )

m=0
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Two-dimensional Fourier Transforms

Alternatively, we can write a single expression for the complete
Fourier transform in two dimensions:

M-1N-1 n km
ckl:ZZymneXp{—227r<N+ﬁ>}

m=0 n=0
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Two-dimensional Fourier Transforms

Alternatively, we can write a single expression for the complete
Fourier transform in two dimensions:

M—1N-1 n km
Cpl = Zzymnexp{_ZQﬂ-(N M)}

m=0 n=0

The corresponding inverse transform is:

M—1N-1
:ZZC exp |27 ln+/€_m
kl N

k=0 [=0
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