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Fourier Transforms

The Fourier transform is one of the most useful and most
widely used tool in physics – both traditional and
computational.

Allows one to break down functions/signals into their
component parts and analyze, smooth or filter them.
Also allows one to perform certain kinds of calculations
and solve certain differential equations.
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Fourier Series

Any periodic function f(x) defined on a finite interval
0 ≤ x ≤ L can be written as a Fourier series (assuming that
the function is bounded and has at most a finite number of
discontinuities).

If the function is even (i.e. symmetric) about the
midpoint (x = L

2
) then one can write the cosine series:

f(x) =
∞∑
k=0

αk cos(
2πkx

L
)

If the function is odd (i.e. antisymmetric) about the
midpoint (x = L

2
) then one can write the sine series:

f(x) =
∞∑
k=1

βk sin(
2πkx

L
)
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Fourier Series – periodic vs non periodic

For a general function (with no special symmetry), one
can write the series:

f(x) =
∞∑

k=−∞

γk exp(i
2πkx

L
)

The Fourier series can only be used for periodic functions
(ie the function in 0 to L is repeated in both directions).
If the function in not periodic, and we are only interested
in a portion of this non periodic function over a finite
interval, 0 to L, we can just take that portion and repeat
it to create a periodic function!
Then the Fourier coefficients will only give the correct
information about the function in the interval 0 to L.
Outside this interval, the function will be just repeated
(and may not have anything to do with the original
function.
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Fourier Series – coefficients

The coefficients γk are in general complex:

∫ L

0

f(x) exp(−i2πkx
L

)dx =
∞∑

k′=−∞

γk′

∫ L

0

exp(i
2π(k′ − k)x

L
)dx

If k′ 6= k:∫ L

0

exp(i
2π(k′ − k)x

L
)dx =

L

i2π(k′ − k)

[
exp(i

2π(k′ − k)x

L
)

]L
0

=
L

i2π(k′ − k)
[ei2π(k

′−k) − 1]

= 0
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Fourier Series – coefficients

For k′ = k: ∫ L

0

f(x) exp(−i2πkx
L

)dx = Lγk

γk =
1

L

∫ L

0

f(x) exp(−i2πkx
L

)dx

Thus, given a function f(x), we can find the Fourier
coefficients γk, or given the coefficients, we can find the
function f(x) – we can go back and forth freely between the
function and the Fourier coefficients.
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Discrete Fourier Transform (DFT)

For some functions f(x), the Fourier coefficients can be
determined analytically.

There are, however, many cases where this is not doable –
the integral is not doable because the function is too
complicated or the function f(x) maynot even be known
in analytic form (for eg. if it is a signal measured in the
laboratory experiment).
In such cases, the integral can be evaluated numerically.
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Discrete Fourier Transform (DFT)

Applying the trapezoidal rule for integration (N slices of width
h = L/N) to calculate γk:

γk =
1

L

L

N

[
f(0)

2
+
f(L)

2
+

N−1∑
n=1

f(xn) exp(−i2πkxn
L

)

]
where xn = n

N
L

However, as f(x) is periodic, f(L) = f(0):

γk =
1

N

[N−1∑
n=0

f(xn) exp(−i2πkxn
L

)

]
This formula can be used to evaluate the coefficients on a
computer. A simpler way to write this is as:

γk =
1

N

[N−1∑
n=0

yn exp(−i2πkn
N

)

]
where yn = f(xn)
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Discrete Fourier Transform (DFT)

γk =
1

N

N−1∑
n=0

yn exp(−i2πkn
N

)

This sum is known as the dicrete fourier transform (DFT).

Similarly one can define:

ck =
N−1∑
n=0

yn exp(−i2πkn
N

)

The quantities γk and ck only differ by the constant 1/N
factor. For our purpose they are both equal, and we define the
latter as the definition of DFT.
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Discrete Fourier Transform (DFT)

So far, we have described the results of using Trapezoidal rule
for the integral.. However, in principle, this is exact!:

N−1∑
k=0

ck exp(i
2πkn

N
) =

N−1∑
k=0

N−1∑
n′=0

yn′ exp(−i2πkn
′

N
) exp(i

2πkn

N
)

=
N−1∑
n′=0

yn′

N−1∑
k=0

exp

(
i
2πk(n′ − n)

N

)
= Nyn assuming 0 ≤ n ≤ N

Equivalently,

yn =
1

N

N−1∑
k=0

ck exp

(
i
2πkn

N

)
This is called the "Inverse Discrete Fourier Transform."
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Discrete Fourier Transform (DFT)

This inverse transform is the counterpart to the "forward"
transform.

It tells us given the coefficients ck, we can recover the
values of the sample yn they came from "exactly"!
Thus both ck and yn give a complete representation of
the data and we can move from one to the other without
loosing any detail.
It is important to appreciate that unlike the original
Fourier series, the discrete version only gives us the
sample values at yn = f(xn). It tells us nothing about the
value of the function f(x) in between the points.
So, two different functions with same values at the sample
points will have the same DFT – no matter what they do
in between the points!
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DFT for real functions

Suppose all the yn are real and consider the value of ck for
some k that is less than N but greater than N

2
.

We can write k = N − r with 1 ≤ r ≤ N
2

cN−r =
N−1∑
n=0

yn exp

(
− i2π(N − r)n

N

)

=
N−1∑
n=0

yn exp(−i2πn) exp

(
− i2πrn

N

)

=
N−1∑
n=0

yn exp

(
− i2πrn

N

)
= c∗r

Thus: cN−1 = c∗1 cN−2 = c∗2 and so forth. That means that
Fourier coefficients ck of a real function only has to be
calculated for 0 ≤ k ≤ N

2
.
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Discrete Fourier Transform – positions of sample points

One thing to notice about the DFT is that we can shift the
sample points along the x-axis, and not much changes.
Suppose:

x′n = xn + ∆ =
n

N
L+ ∆

Then the DFT is:

ck =
N−1∑
n=0

f(xn + ∆) exp

(
− i2πk(xn + ∆)

L

)

= exp

(
− i2πk∆

L

)N−1∑
n=0

f(x′n) exp

(
− i2πkxn

L

)

= exp

(
− i2πk∆

L

)N−1∑
n=0

y′n exp

(
− i2πkn

N

)
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Discrete Fourier Transform – positions of sample points

ck = exp

(
− i2πk∆

L

)N−1∑
n=0

y′n exp

(
− i2πkn

N

)

But this is the same as the original DFT except for a
(k-dependent) phase factor. Thus the DFT is really
independent of where we choose to place the samples – only
the coefficients change by a phase factor.
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Two-dimensional Fourier Transforms

Functions of two variables f(x, y) can also be Fourier
transformed, using a two dimensional Fourier transform. This
simply means that one first transform with respect to one
variable and then the other!

Suppose that we have an M ×N grid points of samples ymn.
We first transform on each of the M rows:

c′ml =
N−1∑
n=0

ymn exp

(
− i2πln

N

)

Then we take the lth coefficient of each row and Fourier
transform them :

ckl =
M−1∑
m=0

c′ml exp

(
− i2πkm

M

)
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c′ml exp

(
− i2πkm

M

)

15/16



Two-dimensional Fourier Transforms

Alternatively, we can write a single expression for the complete
Fourier transform in two dimensions:

ckl =
M−1∑
m=0

N−1∑
n=0

ymn exp

[
− i2π

(
ln

N
+
km

M

)]

The corresponding inverse transform is:

ymn =
M−1∑
k=0

N−1∑
l=0

ckl exp

[
i2π

(
ln

N
+
km

M

)]
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