Stretch

Bend

Torsion

Inversion

- Energy and Forces

CONSISTENT

FORCE-FIELD

THE JOURNAL OF CHEMICAL PHYSICS
VOLUME 49, NUMBER 11
1 DECEMBER 1968
Consistent Force Field for Calculations of Conformations, Vibrational Spectra, and Enthalpies of Cycloalkane and n-Alkane Molecules
S. Lifson and A. Warshel

Department of Chemical Physics, Weismann Institute of Science, Rehovol, Israed
(Received 13 May 1968)

An All Atom Force Field for Simulations of Proteins and
Nucleic Acids Journal of Computational Chemistry, Vol. 7, No. 2, 230-252 (1986)

Scott J. Weiner, Peter A. Kollman,
Times Cited: 4739
Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, California 94143
Dzung T. Nguyen, David A. Case, Department of Chemistry, University of California, Davis, California 95616

Received 7 March 1985; accepted 5 August 1985

AMBER

J. Am. Chem. Soc. 1995, 117, 5179-5197

$$
\text { Times Cited: } 9731
$$

A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules

Wendy D. Cornell, ${ }^{\dagger}$ Piotr Cieplak, ${ }^{\ddagger}$ Christopher I. Bayly, ${ }^{\circledR}$ Ian R. Gould, ${ }^{\perp}$ Kenneth M. Merz, Jr., ${ }^{\prime \prime}$ David M. Ferguson, ${ }^{\text {\& }}$ David C. Spellmeyer," Thomas Fox, James W. Caldwell, and Peter A. Kollman*
Contribution from the Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143

CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations*
 Times cited: 9702

Bernard R. Brooks, ${ }^{\dagger}$ Robert E. Bruccoleri, ${ }^{\ddagger}$ Barry D. Olafson, ${ }^{\S}$ David J. States, ${ }^{〔}$ S. Swaminathan, and Martin Karplus
Department of Chemistry, Harvard University, Cambridge, Massachusetts 02138
Received 6 July 1982; accepted 14 October 1982

CHARMM

Times cited: 7736
3586
J. Phys. Chem. B 1998, 102, 3586-3616

All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins ${ }^{\dagger}$

DREIDING: A Generic Force Field for Molecular Simulations

Stephen L. Mayo, Barry D. Olafson, and William A. Goddard III ${ }^{*, 1}$

BioDesign, Inc., 199 South Los Robles (Suite 540), Pasadena, California 91101 (Received: October 2, 1989; In Final Form: Februarv 2. 19901

UFF, a Full Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics Simulations

A. K. Rappé,* C. J. Casewit, ${ }^{\ddagger}$ K. S. Colwell, W. A. Goddard III, \# and W. M. Skiff ${ }^{\dagger}$ Contribution from the Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523. Received March 23, 1992
J. Am. Chem. Soc. 1992, 114, 10024-10035

Times cited: 3838

Potential Energy Function

Intramolecular (internal, bonded terms)

$$
\begin{aligned}
& \sum_{\text {bonds }} K_{b}\left(b-b_{o}\right)^{2}+\sum_{\text {angles }} K_{\theta}\left(\theta-\theta_{o}\right)^{2}+\sum_{\text {torsions }} K \phi(1+\cos (n \phi-\delta)) \\
& +\sum_{\text {impropers }} K_{\varphi}\left(\varphi-\varphi_{o}\right)^{2}+\sum_{\text {Urey-Bradley }} K_{U B}\left(r_{1,3}-r_{1,3, o}\right)^{2}
\end{aligned}
$$

Intermolecular (external, nonbonded terms)

$$
\sum_{\text {nonbonded }} \frac{q_{i} q_{j}}{4 \pi D r_{i j}}+\varepsilon_{i j}\left[\left(\frac{R_{\min , i j}}{r_{i j}}\right)^{12}-2\left(\frac{R_{\min , i j}}{r_{i j}}\right)^{6}\right]
$$

Intermolecular interactions between bonded atoms 1,2 interactions: 0
1,3 interactions: 0
1,4 interactions: 1 or scaled
> 1,4 interactions: 1

$$
V_{\text {bond }}=K_{b}\left(b-b_{o}\right)^{2}
$$

Chemic al type	$\mathrm{K}_{\text {bond }}$	b_{0}
$\mathrm{C}-\mathrm{C}$	$100 \mathrm{kcal} / \mathrm{mole} / \AA^{2}$	$1.5 \AA$
$\mathrm{C}=\mathrm{C}$	$200 \mathrm{kcal} / \mathrm{mole} / \AA^{2}$	$1.3 \AA$
$\mathrm{C}=-\mathrm{C}$	$400 \mathrm{kcal} / \mathrm{mole} / \AA^{2}$	$1.2 \AA$

$$
V_{\text {dihedral }}=K_{\phi}(1+(\cos n \phi-\delta))
$$

$$
\delta=0^{\circ}
$$

Intermolecular parameters

$$
\sum_{\text {nonbonded }} \frac{q_{i} q_{j}}{4 \pi D r_{i j}}+\varepsilon_{i j}\left[\left(\frac{R_{\min , i j}}{r_{i j}}\right)^{12}-2\left(\frac{R_{\min , i j}}{r_{i j}}\right)^{6}\right]
$$

q_{i} : partial atomic charge
D: dielectric constant
ε : Lennard-Jones (LJ, vdW) well-depth
$\mathrm{R}_{\min }: \mathrm{LJ}$ radius ($\mathrm{R}_{\min } / 2$ in CHARMM)
Combining rules (CHARMM, Amber)

$$
\begin{aligned}
& \mathrm{R}_{\min \mathrm{i}, \mathrm{j}}=\mathrm{R}_{\min \mathrm{i}}+\mathrm{R}_{\min \mathrm{j}} \\
& \varepsilon_{\mathrm{i}, \mathrm{j},}=\operatorname{SQRT}\left(\varepsilon_{\mathrm{i}} * \varepsilon_{\mathrm{j}}\right)
\end{aligned}
$$

$$
\varepsilon_{i j}\left[\left(\frac{R_{\min , i j}}{r_{i j}}\right)^{12}-2\left(\frac{R_{\min , i j}}{r_{i j}}\right)^{6}\right]
$$

Alternate intermolecular terms

$$
\begin{gathered}
V_{H b o n d}=\sum_{H b o n d s} \varepsilon_{H B}\left|\left(\frac{R_{H B, A-H}}{r_{A-H}}\right)^{12}-\left(\frac{R_{H B, A-H}}{r_{A-H}}\right)^{10}\right| * \cos \left(\theta_{A-H-D}\right) \\
V_{v d w}=\sum_{v d w} \varepsilon_{i j}\left[\left(\frac{R_{\min , i j}}{r_{i j}}\right)^{9}-\left(\frac{R_{\min , i j}}{r_{i j}}\right)^{6}\right] \\
V_{v d w}=\sum_{v d w} \varepsilon_{i j}\left(e^{\frac{-a r_{i j}}{R_{\text {mini.ji }}}}-\left(\frac{R_{\min , i j}}{r_{i j}}\right)^{6}\right) \text { Buckingham potential } \\
V_{\text {Morse }}=D_{e}\left(1-e^{\alpha\left(R_{e}-r\right)}\right)^{2}
\end{gathered}
$$

Various kind of non-bond interactions

van der Walls Dispersion forces

A simple model to explain dispersive interaction was proposed by London using quantum mechanics. The dispersive force is due to the instantaneous dipoles which arise during fluctuations of electron clouds. An instantaneous dipole in a molecule can in turn induce a dipole in the neighboring atoms, giving rise to an attractive interactions.

Dispersive Forces (London dispersive forces, van der Waals)
$V_{\text {VDW }}=-a / r^{6} \quad$ (Attractive force)
Lennard-Jones Potential: $V(r)_{L J}=-$ ($a / r^{6}-b / r^{m}$)

Atom A Atom B
The negative charge performs simple harmonic motion with angular frequency ω along the z-axis about the stationary positive charge.
Think about Hydrogen atom (electron moving around proton). See Chaikin and Lubensky for an alternative derivation.
If the force constant of the oscillation is k and if the mass of the oscillating charge is m , then the potential energy of an isolated Drude molecule is $1 / 2 \mathrm{kz}^{2}$, where z is the separation of the charges and ω is related to the force const. $\omega=\sqrt{ } \mathrm{k} / \mathrm{m}$

$$
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial z^{2}}+\frac{1}{2} k z^{2}=E \psi
$$

Energy of the system is given by En $=(n+1 / 2) \hbar \omega$. The ZPE is $1 / 2 \hbar \omega$

We now introduce a second Drude molecule, identical to the first, with positive charge also located on the z -axis and an oscillating negative charge. When the two molecules are infinitely seperated they do not interact and the total ground state energy of the system is just twice the ZPE $\sim \hbar \omega$. The instantaneous dipole of each molecule is $q z$. As they are close interaction arises due to the dipolar interaction given by (r is the separation of the molecules)

$$
v\left(\mu_{1}, \mu_{2}\right)=-2 \frac{\mu_{1} \mu_{2}}{4 \pi \varepsilon_{0} r^{3}}=-2 \frac{z_{1} z_{2} q^{2}}{4 \pi \varepsilon_{0} r^{3}}
$$

The Schrodinger equation for this system is

$$
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial z_{1}^{2}}-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial z_{2}^{2}}+\left[\frac{1}{2} k z_{1}^{2}+\frac{1}{2} k z_{2}^{2}-2 \frac{z_{1} z_{2} q^{2}}{4 \pi \varepsilon_{0} r^{3}}\right]=E \psi
$$

The equation can be solved by making following transformation

$$
a_{1}=\frac{z_{1}+z_{2}}{\sqrt{2}} ; a_{2}=\frac{z_{1}-z_{2}}{\sqrt{2}} ; k_{1}=k-\frac{2 q^{2}}{4 \pi \varepsilon_{0} r^{3}} ; k_{2}=k+\frac{2 q^{2}}{4 \pi \varepsilon_{0} r^{3}}
$$

With the above transformation the above equation becomes

$$
-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial a_{1}^{2}}-\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial a_{2}^{2}}+\left[\frac{1}{2} k a_{1}^{2}+\frac{1}{2} k a_{2}^{2}\right]=E \psi
$$

This is the Schrodinger equation for two independent oscillators with frequencies given as follows

$$
\omega_{1}=\omega \sqrt{1-\frac{2 q^{2}}{4 \pi \varepsilon_{0} r^{3} k}} ; \omega_{2}=\omega \sqrt{1+\frac{2 q^{2}}{4 \pi \varepsilon_{0} r^{3} k}}
$$

The ground state energy of the system is just the sum of the ZPE of two oscillators

$$
E_{0}=\frac{1}{2} \hbar\left(\omega_{1}+\omega_{2}\right)
$$

If we now substitute for ω_{1} and ω_{2} and expand the square roots

$$
E_{0}(r)=\hbar \omega-\frac{q^{4} \hbar \omega}{2\left(4 \pi \varepsilon_{0}\right)^{2} r^{6} k^{2}}
$$

The interaction energy of the two oscillators is the difference between this ZPE and the energy of the system when the oscillators are infinitely separated

$$
v(r)=-\frac{q^{4} \hbar \omega}{2\left(4 \pi \varepsilon_{0}\right)^{2} r^{6} k^{2}}
$$

The force constant k is related to the polarisability of the molecule as follows: suppose a single Drude molecule is exposed to an external electric field E. In the electric field, a force $q E$ acts on each charge (in opposite directions as the charges are of opposite sign). This force causes the charges to separate and equilibrium is reached when the restoring force due to the stretching of the bond (kz) is equal to the electrostatics force: $q E=k z$

This separation of the charges is equivalent to a static dipole given by

$$
\mu_{\text {ind }}=q z=q^{2} E / k=\alpha \mathbf{E}
$$

Thus the polarisability is given by

$$
\alpha=q^{2} / k
$$

So the interaction energy is given by

$$
v(r)=-\frac{\alpha^{4} \hbar \omega}{2\left(4 \pi \varepsilon_{0}\right)^{2} r^{6}}
$$

The Drude model only considers dipole-dipole interactions, if higher order terms such as dipole-quadrupole etc are included the interaction energy can be written as a series expansion

$$
V(r)=a / r^{6}+b / r^{8}+c / r^{10}
$$

All coefficients are negative

Dimensions and Units 3 . Conformal Solutions

- Lennard-Jones potential in dimensionless form

$$
u^{*}\left(r^{*}\right)=4\left[\left(\frac{1}{r^{*}}\right)^{12}-\left(\frac{1}{r^{*}}\right)^{6}\right]
$$

- Parameter independent!
- Dimensionless properties must also be parameter independent
- convenient to report properties in this form, e.g. $\mathrm{P}^{*}\left(\rho^{*}\right)$
- select model values to get actual values of properties
- Basis of corresponding states
- Equivalent to selecting unit value for parameters

Energy conservation in Molecular dynamics

$$
E(t)=\mathrm{K}(T)+V(t)
$$

We want to derive an expression for the rate of change of energy with time $\mathrm{dE} / \mathrm{dt}$. First we consider the kinetic energy term

$$
\frac{d k}{d t}=\sum_{i=1}^{N} \frac{d}{d t}\left(\frac{1}{2} m_{i} v_{i}^{2}\right)=\sum_{i=1}^{N} m_{i} v_{i} \frac{d v_{i}}{d t}=\sum_{i=1}^{N} v_{i} f_{i}
$$

The potential energy is written as a series of pairwise interaction

$$
V(t)=\sum_{i=1}^{N} \sum_{j=t+1}^{N} v\left(r_{i j}(t)\right)
$$

The derivative of the potential energy wrt to time is given by

$$
\frac{d V}{d t}=\sum_{i=1}^{N} \sum_{j=i+1}^{N} \frac{\partial V}{\partial v\left(r_{i j}\right)} \frac{d v\left(r_{i j}\right)}{d t}
$$

$\overline{\partial v\left(r_{i j}\right)}$ equals 1 for each pairwise combination i and j. Each term $v\left(r_{i j}\right)$ is a function of the positions of atom i and $j\left(r_{i}\right.$ and r_{j}) and we can write

$$
\frac{d v\left(r_{i j}\right)}{d t}=\frac{d v\left(r_{i j}^{\prime}\right)}{d r_{i}} \frac{d r_{i}}{d t}+\frac{d v\left(r_{i j}\right)}{d r_{j}} \frac{d r_{i j}}{d t}
$$

For a given atom i , there will be a total of $\mathrm{N}-1$ terms of the form $\mathrm{v}\left(\mathrm{r}_{\mathrm{ij}}\right)$ in the expression for the potential energy due to the interactions between I and all other atoms j . Hence we can write $\mathrm{dV} / \mathrm{dt}$ as follows

$$
\frac{d V}{d t}=\sum_{i=1}^{N} \sum_{i \neq j} \frac{\partial v\left(r_{i j}\right)}{\partial r_{i}} \frac{d r_{i}}{d t}=\sum_{i=1}^{N} \frac{d r_{i}}{d t} \sum_{i \neq j}^{N} \frac{\partial v\left(r_{i j}\right)}{\partial r_{i}}
$$

The force on atom I due to its interaction with atom j equals minus the gradient with respect to r_{i} or $-\frac{\partial v\left(r_{i j}\right)}{\partial r_{i}}$

Thus the total force on the atom is equal to $\quad-\sum_{i \neq j}^{N} \sum_{\nu v\left(r_{i j}\right)}^{\partial r_{i}}$
So we have

$$
\frac{d V}{d t}=-\sum_{i=1}^{N d t} d r_{i} f_{i}=-\sum_{i=1}^{N} v_{i} f_{i}
$$

Thus $\mathrm{dV} / \mathrm{dt}+\mathrm{dK} / \mathrm{dt}=\mathrm{dE} / \mathrm{dt}=0$, which imply that energy is constant

Forces 1. Formalism

- Force is the gradient of the potential
$\begin{aligned} & \mathbf{F}_{2 \rightarrow 1}=-\nabla u\left(r_{12}\right) \\ & \text { Force on 1, } \\ & \text { due to 2 }\end{aligned}=-\frac{\partial u\left(r_{12}\right)}{\partial x_{1}} \mathbf{e}_{x}-\frac{\partial u\left(r_{12}\right)}{\partial y_{1}} \mathbf{e}_{y}$

$$
\begin{aligned}
& =-\frac{d u\left(r_{12}\right)}{d r_{12}}\left[\frac{\partial r_{12}}{\partial x_{1}} \mathbf{e}_{x}+\frac{\partial r_{12}}{\partial y_{1}} \mathbf{e}_{y}\right] \\
& =-\frac{f\left(r_{12}\right)}{r_{12}}\left[x_{12} \mathbf{e}_{x}+y_{12} \mathbf{e}_{y}\right]
\end{aligned}
$$

$$
\mathbf{F}_{2 \rightarrow 1}=-\mathbf{F}_{1 \rightarrow 2}
$$

Forces 2. LJ Model

- Force is the gradient of the potential y_{y} $\mathbf{F}_{2 \rightarrow 1}=-\frac{f\left(r_{12}\right)}{r_{12}}\left[x_{12} \mathbf{e}_{x}+y_{12} \mathbf{e}_{y}\right]$
e.g., Lennard-Jones model

$$
\begin{aligned}
& u(r)=4 \varepsilon\left[\left(\frac{\sigma}{r}\right)^{12}-\left(\frac{\sigma}{r}\right)^{6}\right] \\
& f(r)=-\frac{d u}{d r}
\end{aligned}
$$

$$
=+\frac{48 \varepsilon}{\sigma}\left[\left(\frac{\sigma}{r}\right)^{13}-\frac{1}{2}\left(\frac{\sigma}{r}\right)^{7}\right]
$$

$\mathbf{F}_{2 \rightarrow 1}=-\frac{48 \varepsilon}{\sigma^{2}}\left[\left(\frac{\sigma}{r_{12}}\right)^{14}-\frac{1}{2}\left(\frac{\sigma}{r_{12}}\right)^{8}\right]\left[x_{12} \mathbf{e}_{x}+y_{12} \mathbf{e}_{y}\right]$

Boundary Conditions

- Small system is simulated to study/mimic the bulk properties
- Surface effect: a large fraction of the small sample lie on the surface. For example for 1000 molecules arranged in 10x10x10 cube, almost 400 molecules appear on the cube faces. Surface molecules/atoms experience different force than in the bulk.
- Impractical to contain system with a real boundary
- Enhances finite-size effects
- Artificial influence of boundary on system properties

Solution: Periodic boundary condition

-The problem of surface effect can be overcome by using. "Periodic Boundary Conditions" (PBC). The bounding box is replicated throughout space to form an infinite lattice. In the course of simulation as a molecule moves in the original box, its periodic images in the each of the neighboring boxes
-As the molecule leaves the central box, one of its image will enter through the opposite face.
-No physical wall at the boundary and so no surface molecules.

Issues with Periodic Boundary Conditions

- Suppress fluctuation that have wavelength greater than the length of the simulation cell. This could be problem near critical point where fluctuation plays dominant role.
- new artificial correlations
- It can also affect the rate at which a simulated liquid nucleates and forms a solid or glass when rapidly cooled (Honeycutt and Andersen 1984)
- Artifact of PBC can be determined by performing simulations using a variety of cell sizes and shape

Issues with Periodic Boundary Conditions

- Other issues arise when dealing with longer-range potentials
- accounting for long-range interactions
- nearest image not always most energetic
- splitting of molecules (charges)
- discuss details later
- Other geometries possible
- any space-filling unit cell
- hexagonal in 2D
- truncated octahedron in3D
- rhombic dodecahedron in 3D
- surface of a (hyper)sphere
- variable aspect ratio useful for solids
- relieves artificial stresses

Implementing Cubic Periodic Boundaries

- How do we handle PBC and the minimum image convention
- Box origin
- center of box, coordinates range from $-L / 2$ to $+L / 2$. When a molecule leaves a box crossing one of the boundary, its image enters the box and is accomplished either by adding or subtracting L to the particle coordinate.

$$
\begin{aligned}
& I f(d r x[I]>L / 2) r x[I]=r x[I]-L \\
& I f(d r x[I]>-L / 2) r x[I]=r x[I]+L
\end{aligned}
$$

A more convenient way to handle PBC as well as minimum image convention is to use reduce (scaled coordinates) in the range ($-1 / 2,1 / 2$)

- Box size

- unit box, coordinates scaled by box length
- $\quad \operatorname{sep}[0]=\operatorname{sep}[0]-\operatorname{NINT}(\operatorname{sep}[0])$
- define NINT(x) ((x) < 0.0 ? (int) ((x) - 0.5) : (int) ((x) + 0.5))

Implementing Cubic Periodic Boundaries 3

```
void periodic_boundary_conditions(int n_atoms, double **h,
    double **scaled_atom_coords, double **atom_coords)
{
int i, j;
for (i = 0; i < n_atoms; ++i) {
    for (j = 0; j < NDIM; ++j)
    scaled_atom_coords[i][j] -= NINT(scaled_atom_coords[i][j]);
    atom_coords[i][0] = h[0][0] * scaled_atom_coords[i][0]
        + h[0][1] * scaled_atom_coords[i][1]
        + h[0][2] * scaled_atom_coords[i][2];
    atom_coords[i][1] = h[1][1] * scaled_atom_coords[i][1]
        + h[1][2] * scaled_atom_coords[i][2];
    atom_coords[i][2] = h[2][2] * scaled_atom_coords[i][2];
    }}
```


Implementing Cubic Periodic Boundaries

void scaled_atomic_coords(int n_atoms, double **h_inv, double **atom_coords,

```
    double **scaled_atom_coords)
```

\{
int i;
for ($\mathrm{i}=0$; i < n_atoms; ++i) \{
scaled_atom_coords[i][0] = h_inv[0][0] * atom_coords[i][0]
+ h_inv[0][1] * atom_coords[i][1]
+ h_inv[0][2] * atom_coords[i][2];
scaled_atom_coords[i][1] = h_inv[1][1] * atom_coords[i][1]
+ h_inv[1][2] * atom_coords[i][2];
scaled_atom_coords[i][2] = h_inv[2][2] * atom_coords[i][2];
\}
\}

Truncating the Potential

- For system with pair wise additive interactions force on a particle I is computed by all its neighbors. This means for a system of N particles we have to evaluate $\mathrm{N}(\mathrm{N}-1) / 2$ pair interactions. So the time needed for evaluation of energy/force scales as N^{2}. This is one of the main bottleneck in the simulation field.
- Bulk system modeled via periodic boundary condition
- not feasible to include interactions with all images
- must truncate potential at half the box length (at most) to have all separations treated consistently
- Contributions from distant separations may be important

Minimum image convention and Truncating the Potential

How do we evaluate force on the red atom in the simulation box. Assuming pair wise interaction we should include interaction of the red atom with all other atoms in the simulation box. There are $\mathrm{N}-1$ such term. However, we must also include interaction coming from images lying in the surrounding boxes. That is an infinite number of terms.

Minimum image convention

Construct a simulation box of same size as the the original box with the red atom at its center. Now minimum image convention says that the red atom interact with those atoms which lie in this region, that is with the closest periodic images of the other $\mathrm{N}-1$ atoms.

Truncating the Potential

With the minimum image convention energy/force computation involves $1 / 2 \mathrm{~N}(\mathrm{~N}-1)$ terms.This is significant for large system size.
For short range interaction major contribution comes from the neighbors close to the atom of interest. So use a spherical cutoff to truncate the interaction.
So the red atom interact only with the atoms lying inside the cutoff region (2 black and one blue)

Points to remember

-The cutoff distance should be smaller than $\mathrm{L} / 2$ to be consistent with the minimum image convention
-Thermodynamic properties are different for a truncated potential compared to a nontruncated case. However, we can apply long range correction to get back approximately the non-truncated properties.
CCutoff introduces discontinuity in the force and energy computation. This has serious consequences on the energy conservation and stability of the simulation

Truncating the Potential contd

Potential truncation introduces discontinuity

- Corresponds to an infinite force
- Problematic for MD simulations
- ruins energy conservation
- Shifted potentials: a constant term is subtracted from the potential at all values

$$
u_{s}(r)=\left\{\begin{array}{cc}
u(r)-u\left(r_{c}\right) & r \leq r_{c} \\
0 & r>r_{c}
\end{array}\right.
$$

- Removes infinite force
- Still discontinuity in force: at the cutoff distance, the force will have a finite value which drops to zero just beyond the cutoff

Truncating the Potential

Shifted-force potentials : a linear term can be added to the potential, making the derivative to be zero at the cutoff

$$
u_{s f}(r)=\left\{\begin{array}{cc}
u(r)-u\left(r_{c}\right)-\left(\frac{d u}{d r}\right)_{r=r_{c}}\left(r-r_{c}\right) & r \leq r_{c} \\
0 & r>r_{c}
\end{array}\right.
$$

- The discontinuity now appears in the gradient, not in the force itself. The force goes smoothly to zero at cutoff.
- The shift makes the potential deviate from the true potential, so the calculated thermodynamic properties will be changed
- True values can be retrieved but is difficult to do so, so rarely used in simulation

Eliminate discontinuities in the energy and force by a switching function

Truncating the Potential

- Lennard-Jones example

$$
-\mathrm{r}_{\mathrm{c}}=2.5 \sigma
$$

$$
u_{s}(r)=\left\{\begin{array}{cc}
u(r)-u\left(r_{c}\right) & r \leq r_{c} \\
0 & r>r_{c}
\end{array} \quad u_{s f}(r)=\left\{\begin{array}{cc}
u(r)-u\left(r_{c}\right)-\frac{d u}{d r}\left(r-r_{c}\right) & r \leq r_{c} \\
0 & r>r_{c}
\end{array}\right.\right.
$$

Switching function

Potential function is multiplied by a polynomial which is a function of distance

$$
u_{S}(r)=u(r) S(r)
$$

$S(r)$ gradually taper the potential between two cutoff values : it smoothly changes its value of 1 to a value of 0 between two cutoff : r_{l} (lower cutoff) and r_{u} (upper cutoff) and satisfies the following criteria

$$
\begin{array}{ll}
S_{r=r_{l}}=1.0 & \left(\frac{d S}{d r}\right)_{r=r_{l}}=0 \\
S_{r=r_{u}}=0 & \left(\frac{d S}{d r}\right)_{r=r_{u}}=0
\end{array} \quad\left(\frac{d^{2} S}{d r^{2}}\right)_{r=r_{l}}=0 .
$$

Switching function contd.

Zero first derivative ensures that the force approaches to zero smoothly at the cutoffs. A continuous second derivative ensures the stability of the integration algorithm.

$$
\begin{gathered}
S(r)=\left(r_{u}^{2}-r^{2}\right)^{2} \frac{2}{\gamma^{3}}\left[\frac{3 \gamma}{2}-\left(r_{u}^{2}-r^{2}\right)\right] \quad \text { wh re } e \gamma=r_{u}^{2}-r_{l}^{2} \\
=c_{0}\left(r_{u}^{2}-r^{2}\right)+c_{1}\left(r_{u}^{2}-r^{2}\right)^{2}+c_{2}\left(r_{u}^{2}-r^{2}\right)^{3} \\
S\left(r_{l}\right)=1 \\
S\left(r_{u}\right)=0
\end{gathered}
$$

Generally r_{u} is taken to be ~ 1 to $2 \AA$ smaller than r_{c} so that atom pairs that are initially greater than r_{u} apart do not move closer than r_{u} during the time that the NB List is not updated. Common choice is $\mathrm{r}_{\mathrm{c}}=12 \AA, \mathrm{r}_{\mathrm{u}}=$ $10 \AA \AA_{1}=8 \AA$.
/* Calculate pair interaction. The LJ pair potential is switched off smoothly between r_on and r_off. */

```
one_over_r2_sep = 1.0 / r2_sep;
rho_2 = comb_par[id_0][id_1][2] * one_over_r2_sep;
rho_6 = CUBE(rho_2);
rho_12 = SQR(rho_6);
*u_vdw = rho_12 - rho_6;
*f_vdw = rho_12 + *u_vdw;
four_epsilon = comb_par[id_0][id_1][3];
(*u_vdw) *= four_epsilon;
(*f_vdw) *= 6.0 * one_over_r2_sep * four_epsilon;
if (r2_sep > r2_on) \{
    sw1 = r2_off - r2_sep;
    sw2 = two_over_gamma_cubed * sw1;
    sw3 = sw1 * sw2 * (three_gamma_over_two - sw1);
    sw4 \(=6.0\) * sw2 * (gamma - sw1);
    *f_vdw = sw4 * (*u_vdw) + sw3 * (*f_vdw);
    (*u_vdw) *= sw3;
```


Cubic Spline

Gubic Spline

Gubic Spline

$$
\mathrm{R}_{\mathrm{on}}=0 \mathrm{~A}, \mathrm{R}_{\mathrm{off}}=9 \mathrm{~A}
$$

Switching function contd.

We can use higher order polynomial also

$$
S(r)=c_{0}+c_{1}\left[\frac{r-r_{l}}{r_{u}-r_{l}}\right]+c_{2}\left[\frac{r-r_{l}}{r_{u}-r_{l}}\right]^{2}+c\left[\frac{r-r_{l}}{r_{u}-r_{l}}\right]^{3}+c_{4}\left[\frac{r-r_{l}}{r_{u}-r_{l}}\right]^{4}+c_{5}\left[\frac{r-r_{l}}{r_{u}-r_{l}}\right]^{5}
$$

With the coefficients satisfying the previous criteria and that gives

$$
C 0=1, c 1=0, c 2=0, c 3=-10, c 4=15, c 5=-6
$$

Graphics
Plot@ - 0.00021875 * $x^{\wedge} 4+2.625^{*} 10^{\wedge}-5^{*} x^{\wedge} 5-1.09375^{*} 10^{\wedge}=6^{*} x^{\wedge} 6$
$+1.5625^{*} 10^{\wedge}-8^{\star} \mathbf{x}^{\wedge} 7,8 x, 0,20<\mathbf{D}$

Graphics
Graphics

Effect of NB cutoff (216 water molecules)

Electrostatic interaction is most sensitive to NB cutoff ($R_{\text {off }}$) since it falls off more slowly than vdW. Energy converges at $R_{\text {off }}=\sim 15 A\left(R_{\text {on }}=0 A, R_{\text {cut }}=R_{\text {off }}+1 A\right)$.

Radial Distribution Function

- Radial distribution function, g(r)
- key quantity in statistical mechanics
- quantifies correlation between atom pairs
- Definition

 contribute to the energy of the particle I.
DExclude those particles from the energy computation
-Verlet List: Introduce a second cutoff radius $r_{l}>r_{c}$
DMake a list of all the particles within a radius of r_{l} of particle i
DIf the maximum displacement of the particles is less than $\left(r_{l}-r_{c}\right)$ we have to consider only the particles in this list for the energy/force computation

Update the Verlet list as soon as one of the particle is displaced more than $\left(r_{l}-r_{c}\right)$

For MD it is sufficient to have a Verlet list with half the number of particles for each particle as long as interaction $i-j$ is accounted for in either the list of particle i or that of j

The skin is thick enough such that when reconstructing an atom 7, which was not in the original list of atom 1 can not penetrate the r_{c} sphere. Atom 3, 4 can move in and out but their interaction get counted as they are in the original list until the list get updated.

The cutoff sphere and its skin around an atom 1 . Atoms $2,3,4,5$ and 6 are on the list of atom 1, but 7 is not. Among these only $2,3,4$ are within the r_{c} when the list is made

For a periodic system Verlet list has an elegant implementation due to Bekker et. al. (Mol. Sim. 14, 137-151, 1995)

In a periodic system total force on particle i can be written as

$$
F_{i}=\sum_{j=1}^{N} \sum_{k=-13}^{13} F_{i(j k)}
$$

Where the prime denotes that summation is performed over the nearest image of the particle j in the central box $(\mathrm{k}=0)$ or in one of its 26 periodic images (or 8 in 2-d). (j.k) denotes the periodic image of particle j in box k. Box k is defined by the integer numbers n_{x}, n_{y}, n_{z}

$$
k=9 n_{x}+3 n_{y}+n_{z}
$$

Problem with Verlet List

As the size of the system increases neighbor list becomes too large to store easily
Also the testing of every pair separation is also very inefficient Make the neighbor list using Cell list

Cell Lists or Linked-list

-The simulation box is divided into cells with size equal to or slightly larger than the cutoff r_{c}
\square Distribute the particle to the cell according to their position
DEach particle in a given cell interacts with only those particles in the same or neighboring cells

$$
\mathrm{N}_{\mathrm{c}}=\mathrm{N} / \mathrm{M}^{2} \text { in 2-d }
$$

-This scales as N

$$
\mathrm{N}_{\mathrm{c}}=\mathrm{N} / \mathrm{M}^{3} \text { in 3-d } \xrightarrow{\mathrm{r}_{\mathrm{c}}}
$$

The simulation cell is divided into cells of size $\mathrm{r}_{\mathrm{c}} \mathrm{X} \mathrm{r}_{\mathrm{c}}$, a particle i interacts with those particles in the same cell or neighboring cell (in 2D 9 cells; in 3D 27 cells)

$$
\begin{gathered}
\text { \# of pair }=9 \mathrm{NN}_{\mathrm{c}} \text { in 2-d } \\
\# \text { of pair }=27 \mathrm{NN}_{\mathrm{c}} \text { in 3-d }
\end{gathered}
$$

The Cell list is created using the linked list methods:

\square Sorting of atoms to their respective cells
DTwo arrays are created (HEAD AND LIST)
DHEAD (head of the chain) array has one element for each cell. This contains the identification number of one of the molecules sorted into that cell
-LIST (linked list array) contains the number of next molecules in that cell.
DHEAD (head of the chain) array element is used to address the LIST array element.
Dif we follow the trail of linked-list we will eventually reach an element of LIST which is zero. This indicates that there are no more molecules in that cell and we move on to the head of chain of the next cell.

See Allen and Tildesley for details
void neighbor_lists_period()
/* Purge neighbor lists. */

$$
\text { for (i = 0; } \mathrm{i} \text { < n_atoms; ++i) }
$$

nl_tail[i] = NULL;
/* Update cell lists. */
update_cells(period_switch, n_atoms, h, scaled_atom_coords, atom_coords, atom_cells, first, last, phantoms, kc, phantom_skip, nc, nc_p);
/* Update positions of phantom atoms. */
update_phantoms(n_atoms, atom_cells, phantom_skip, phantoms, atom_coords);
/* Loop over central atoms. */
for ($\mathrm{i}=0$; i < n_atoms; ++i) \{
/* Get attributes of atom i. */
for ($\mathrm{k}=0$; $\mathrm{k}<$ NDIM; ++k)

Comparison of efficiency of various cut-off scheme

See Frenkel and Smit for details

