
Molecular Dynamics Simulation

Prabal K Maiti

Department of Physics

http://www.physics.iisc.ernet.in/~maiti

Introduction (Basic facts and some history)

Molecular dynamics, Various schemes for integration,

Inter and Intra molecular forces, Various ensemble (NVE, NVT,
NPT, NPH), atomic charge derivation scheme

How to make the simulation efficient (Cell List, Neighbor List),
Periodic Boundary condition, computing long range interactions

Advanced free energy calculation methods

Monte Carlo simulation

Application: Nanotube, graphene, Liquid Crystal, DNA/protein
simulations

Ref:

Computer simulation of Liquids: M. P. Allen and D. J.
Tildesley, Oxford (1987)
Understanding Molecular simulation: Daan Frenkel and B
Smit (2nd ed)
Molecular Modelling Principles And Applications: Andrew
Leach, Prentice Hall (2001)
The art of Molecular dynamics: D. C.Rappaport
Molecular Modeling and Simulation: Tamar Schlick
Introduction to Molecular dynamics: Hemant Kumar and
Prabal K Maiti
Web: CCP5 library http://www.ccp5.ac.uk

Acknowledgement: http://www.cheme.buffalo.edu/courses/ce530

Grading:

1. 5-6 Assignments
2. 2 individual assignment (need to do some simulation work)
3. Term paper (on some related topics covered in the course.

Topics to be discussed with the instructor)
4. One exam to be decided later

Course TA: Dr. Ashok Garai email: ashok.garai@gmail.com
 Dr. Sudip Chakraborty email: sudip.hammer@gmail.com

Nobel Prize in Chemistry 2013

"for the development of multiscale models for complex chemical
systems"

Martin Karplus, Chem.
Harvard

M Levitt, Str Bio
& Computer

Science
Stanford

A Warshel,
Chem.
USC

Nobel Prize in Chemistry 1998

John A. Pople
Chemistry,Northwestern University, EvanstonWalter Kohn

Physics, University of California, Santa Barbara,

Walter Kohn "for his development of the density-functional
theory"and John A. Pople "for his development of computational
methods in quantum chemistry".

Nanotechnology/Nanofluidics

DNA nanotechnology

Self-assembly

Molecular modeling is the science and art of studying
molecular structure and function through model building
and computation.
Model building could be as simple as representing
molecule by hard/soft sphere (beads) , rigid rods, or other
geometrical shape, sphere/beds connected through springs
or molecule with full chemical details.

What is molecular simulation?

C16

 Molecular model of bio-molecules

Computation can be carried out using following methods:

Molecular mechanics, molecular dynamics, Monte Carlo,
Free energy and solvation methods, structure/activity
relationship (SAR) and many other established procedure.

What is molecular simulation?

Need for Molecular simulation

• There are no general method for a solving complex many-
body problems. Hamiltonian is unknown, until we solve the
quantum many-body problem! In fact in most cases not
possible and requires lots of approximations.

• Molecular simulations are the only possible solution for
such complex many body systems.

• In many cases experiments are limited and expensive.
Simulations can complement the experiment.

• Simulation can give molecular level understanding even at a
single molecule level

Simulation Methodology

Semi-empirical

Give us the phenomena and
invent a model to mimic the
problem.

ab initio methods

Maxwell, Boltzmann and
Schrödinger gave us the model. All
we must do is numerically solve
the mathematical problem and
determine the properties.

These two approaches can be combined to make
what is termed as Multi-scale modeling strategies

“The general theory of quantum mechanics is now
almost complete. The underlying physical laws
necessary for the mathematical theory of a large
part of physics and the whole of chemistry are
thus completely known, and the difficulty is only
that the exact application of these laws leads to
equations much too complicated to be soluble.”

Dirac, 1929

Time
Multi-scale Modeling strategy

High quality multi-scale simulations
 Quantum Mechanical calculations
 First Principles force fields
 Large scale Molecular Dyanmics (MD) simulations
 Mesoscopic modeling (Coarse-grained MD, DPD, BD)
 Macroscopic modeling (finite elements, continuum
 simulations, Lattice Boltzmann)

Å nm mm metermicron

femtosec

picosec

nanosec

microsec

seconds

minutes

QM

MD

MESO

Continuum

Length

electrons atoms grains materials

What size is too big? What times are too long?

• QM (ab initio molecular dynamics)

electrons / N basis sets, speed ~ N3 or N4 (may be linear with very
high prefactor)

Time steps ~10-2 fs.
Example of big and long: 64-256 water molecules during 100 ps.
• Classical atomistic MD

Atoms/ N atoms, speed ~N2 (may be reduced with efficient
algorithms, periodic coulomb is most expensive)

Time steps ~0.5-2 fs.
Example of big and long (1 processor): 50,000 atoms for 1 ns.
(parallel simulations, can improve this much. Parallel codes

available free or almost free: LAMMPS, AMBER, GROMACS,
NAMD)

Short history of Molecular Simulations

• Metropolis, Rosenbluth, Teller (1953) Monte Carlo
Simulation of hard disks.

• Fermi, Pasta Ulam (1954) experiment on ergodicity
• Alder & Wainwright (1958) liquid-solid transition in hard

spheres. “long time tails” (1970)

• Vineyard (1960) Radiation damage using MD
• Rahman (1964) liquid argon, water(1971)
• Verlet (1967) Correlation functions, ...
• Andersen, Rahman, Parrinello (1980) constant pressure

MD
• Nose, Hoover, (1983) constant temperature thermostats.

• Car, Parrinello (1985) ab initio MD.

The examples for each period are
representative. The first five
systems are modeled in vacuum
and the others in solvent.
The 38 µs β-hairpin simulation
in 2001 represents an ensemble
(or aggregate dynamics)
simulation, as accumulated over
several short runs, rather than a
long simulation.

The table is taken from the book
by Tamar Schlick

RANK SITE SYSTEM CORES
RMAX
(TFLOP/S)

RPEAK
(TFLOP/S)

POWER
(KW)

1 National Super
Computer Center in
Guangzhou
China

Tianhe-2,
Intel Xeon
Intel Xeon Phi
31S1P
NUDT

3,120,000 33,862.7 54,902.417,808

2 DOE/SC/Oak Ridge
National Laboratory
United States

Titan - Cray
Cray Inc.

560,640 17,590.0 27,112.58,209

3 DOE/NNSA/LLNL
United States

Sequoia -
IBM

1,572,864 17,173.2 20,132.77,890

4 RIKEN Advanced
Institute for
Computational
Science (AICS)
Japan

K computer,
SPARC64
Fujitsu

705,024 10,510.0 11,280.412,660

5 DOE/SC/Argonne
National Laboratory
United States

Mira -
BlueGene/Q,
IBM

786,432 8,586.6 10,066.33,945

Flops= Number of Cores/cpus Average frequency Operations per cycle∗ ∗
Laptop with 2.5 GHz single processor will have 10 Gflops (4 operation per cycle)

http://www.top500.org/lists/2014/11/

Vendors Count

HP 179

IBM 153

Cray Inc. 62

SGI 23

Bull 18

Dell 9

Fujitsu 8

NUDT 5

RSC Group 4

Atipa 3

Others 39

• Pick particles, masses and potential.

• Initialize positions and momentum. (boundary conditions in space and
time)

• Solve F = m a to determine r(t), v(t).

Newton (1667-87)

• Compute properties along the trajectory

• Estimate errors.

• Try to use the simulation to answer physical questions.

Molecular Dynamics (MD)

What are the forces?

• Crucial since V(r) determines the quality of result.
• Semi-empirical potentials: potential is constructed on

theoretical grounds but using some experimental data.
• Common examples are Lennard-Jones, Coulomb,

embedded atom potentials. They are only good for simple
materials. The ab initio philosophy is that potentials are to
be determined directly from quantum mechanics as
needed.

• But computer power is not yet adequate in general.

• A powerful approach is to use simulations at one level to
determine parameters at the next level.

)(
2

2
rV

dt

rd

∇−=

Unifying QM with molecular dynamics

Ref. D. Marx and J. Hutter, Ab Initio Molecular Dynamics, Cambridge Univ Press, 2009.

The Hamiltonian Operator,

()

()

2 2 212 2
2 2 4 0

22
1 1

4 40 0

22 22 { },{ }
2 2

2
2 { },{ }

2

e
H iIM mi i jI e r rI i j

e Z Ze Z I JI
i j R r R RI JiI I J

V r RI n ei i IM mI iI e

H r RI e i IMI I

πε

πε πε

∑

=− ∇ − ∇ +∑ ∑ ∑
< −

− +∑ ∑
< − −<

=− ∇ − ∇ +∑ −

=− ∇ +∑

h h
r r

r r rr

hh

h

The evolution of the system given by time dependent Schrödinger
equation (TDSE)

() (){ },{ }; { },{ };i r R t H r R ti iI It
∂ Φ = Φ
∂

h

Now our aim is to carry out classical dynamics of nuclei in QM
potential. Separate nuclear and electronic contributions to the total wave

function Φ({ ri },{ RI };t)

The simplest possible form is a product ansatz

() () (){ },{ }; { },{ } { };r R t r R R ti iI I IχΦ = Ψ

This ansatz was introduced by Born to separate systematically the
light electrons from heavy nuclei

2 2
2 2(,) (,)] (,) (,)

2 2
[I I i n e I

I iI i

R t V R t
M m

i r R r Ri iI It
χ χ−Ψ ∇ − ∇ + Ψ∂ =−

∂ ∑ ∑h hh

Then we have

Multiply by ψ*({ ri },RI)and Equation of motion for χ ({RI },t)

integrate over {ri }

Multiply by χ*({ RI },t) and Equation of motion for ψ({ ri },{RI})

integrate over {RI }

We can also have following product ansatz which does not invoke
solving time-independent electronic Schrödinger equation:

() () ()
0

' 'exp (){ },{ }; { }, { };
t

e

t

i
t E t dtr R t r R ti iI Iχ

Φ = Ψ ∫ %h

Breakdown of the adiabatic Born-Oppenheimer approximation in graphene
Geim et. al. Nat. Mat, 2007 Mar;6(3):198-201

.

Nuclear and electronic wave functions are separately normalized to unity
at every instant of time.

() () () ()* *{ }; { }; { }; { };e i I e i IE r t R t H r t R t drdRχ χ= Ψ Ψ∫%

; | ; 1 ; | ; 1t t t tχ χ ψ ψ= =

The phase factor was introduced as follows

{ }
2

2 *

2 I e
I I

dr H
M

i
t

χ χ χ∇ + Ψ Ψ∂ =−
∂ ∑ ∫

hh

2
2]

2e i n e
i i

H V
m −= − ∇ +∑ h

2 2
2 *(,) (,) () (,)

2 2i n e
i Ie I

t t dR V t
m M

i r r ri i it
χ χ−

Ψ ∇ Ψ + − + Ψ

∂ =−
∂ ∑ ∑∫h hh

Time dependent self-consistent field
equations (TDSCF)

•Both electrons and nuclei move quantum mechanically in time-
dependent effective potentials which are obtained self-consistently.
•The simple product ansatz produces mean field description of the

coupled nuclear and electronic dynamics.

Classical dynamics of nuclei and quantum dynamics of electrons

),(
),(

tRS
i

I

I

etRA =χ

()∑ ∫ ∑ ∇=ΨΨ+∇+
∂
∂

I I

I

I
eI

I A

A

M
HdrS

Mt

S 2
2*2

2

1

2

1

()() () 0
2

11 2 =∇+∇∇+
∂
∂ ∑∑

I
I

II
II

I

SA
M

SA
Mt

A

Where A is the amplitude and S is the phase
factor,

Above equation is just the continuity equation if we identify

* 2()r Aρ χ χ= = Probability density

2()
I

S
J r A

M

∇= Current denstiy

I

J S
v

Mρ
∇= =Define velocity field Messiah, Vol I , Chapter-6

Real part govern governs time evolution of phase S and imaginary part time evolution of
amplitude A

HW 1

HW 2

()() () 0
2

11 2 =∇+∇∇+
∂
∂ ∑∑

I
I

II
II

I

SA
M

SA
Mt

A

Multiplying the above equation by 2 A and rearranging we get

()
2

21
0I I

I I

A
A S

t M

∂ + ∇ ∇ =
∂ ∑

0I I
I

J
t

ρ∂ + ∇ =
∂ ∑

Note that continuity equation is independent of h

Now if we take the classical limit for the equation of motion for the
phase factor →0

() 2 *1
0

2 I e
I I

S
S dr H

t M

∂ + ∇ + Ψ Ψ =
∂ ∑ ∫

h

() 21
() 0

2 I
I I

S
S V r

t M

∂ + ∇ + =
∂ ∑

* ()edr H V rΨ Ψ =∫
In the classical approximation, χ describes a fluid of non-interacting classical particles of mass MI and subject
to the potential V(r): the density and current density of this fluid at each point of space are at all times
respectively equal to the probability density ρ and the probability current density J of the quantum particle at
that point.

2

() 0
2
I I

I

S M v
V r

t

∂ + + =
∂ ∑

In terms of the velocity field we have

2

() 0
2
I I

I

M v
S V r

t

∂ ∇ + ∇ + ∇ =
∂ ∑

Take gradient

() 0Iv M v V
t

∂ + ×∇ + ∇ = ÷∂

I

dv
M V

dt
= −∇

So we have the equation of motion for the nuclei

*()I I I eM R t dr H= −∇ Ψ Ψ∫&&

Thus the nuclei move according to the classical mechanics in an effective potential which is obtained by
solving simultaneously the time dependent electronic Schrodinger equation.

Note that TDSCF equation that describes the time evolution of the
electrons still contains the full quantum-mechanical nuclear wave
function χ({RI};t) instead of just the nuclei position RI. We can do a
classical reduction by the following assumption

TDSCF equation for ψ({ ri },t) then becomes

h 0

Ehrenfest’s theorem

This gives us the equation of motion of the mean values of the coordinates q and the
conjugate momenta p of a quantum system

[],i i

d
i q q H

dt
=h [],i i

d
i p p H

dt
=h

[],i
i

H
q H i

q

∂=
∂

hWe also have [],i
i

H
p H i

p

∂= −
∂

h

So we have i
i

d H
q

dt p

∂=
∂ i

i

d H
p

dt q

∂= −
∂

In general the mean values do not obey classical laws of motion unless one can replace
the mean values of the functions on the right hand side by the function of the mean
values

()1 1
1 1

(, .. ; ,...)
,.. ; ,..N N

N N
i i

H q q p p
H q q p p

p p

∂ ∂= < > < > < > < >
∂ ∂

Statistical Ensembles
• Classical phase space is 6N variables (pi, qi) and a

Hamiltonian function H(q,p,t).
• We may know a few constants of motion such as energy,

number of particles, volume...
• Ergodic hypothesis: each state consistent with our knowledge

is equally “likely”; the microcanonical ensemble.
• Implies the average value does not depend on initial

conditions.
• A system in contact with a heat bath at temperature T will be

distributed according to the canonical ensemble:
exp(-H(q,p)/kBT)/Z

• The momentum integrals can be performed.
• Are systems in nature really ergodic? Not always!

 Newton’s equation of motion are time reversible and so should be
our algorithm.

 Hamiltonian dynamics preserve the magnitude of volume element in
phase space and so our algorithm should have this area preserving
property

 simplicity (How long does it take to write and debug?)
 efficiency (How fast to advance a given system?)
 stability (what is the long-term energy conservation?)
 reliability (Can it handle a variety of temperatures, densities,

potentials?)

Criteria for an Integrator

The nearly universal choice for an integrator is the Verlet (leapfrog) algorithm

r(t+δt) = r(t) + v(t) δt + 1/2 a(t) δt 2 + b(t) δt 3 + O(δt 4) Taylor expand

r(t- δt) = r(t) - v(t) δt + 1/2 a(t) δt 2 - b(t) δt 3 + O(δt 4) Reverse time

r(t+ δt) = 2 r(t) - r(t- δt) + a(t) δt 2 + O(δt 4) Add

v(t) = (r(t+ δt) - r(t- δt))/(2 δt) + O(δt 2) estimate velocities

Time reversal invariance is built in the energy does not drift.

Velocity is not required to compute the new position.

Once the new position is computed using position at t- δt, discard the old

Position. The current position become the old positions and the new position
become the current position.

Note that velocity is used only to compute the kinetic energy and hence the
temperature of the system

Time reversible and area preserving

Tuckerman, Berne, Martyna, JCP, 97, 1990 1992

For a classical system, specifying the instantaneous positions and momenta of all the
particles constituting the system can specify the microstate at any time t. For N particles
there are 3N coordinates q1,q2 ...q3N and 3N conjugate momenta p1,p2 ...p3N. The

equations of motion are first order differential equations

ip
ipiqH

iq ∂
∂

=
),(

iq

ipiqH
ip ∂

∂
−=

),(

Let us consider a simple one-particle system in one dimension with a
Hamiltonian

)(
2

2
xU

m
pH +=

Review of Hamiltonian Dynamics and Operators in Classical
Mechanics

m
pq =)(xF

dx
dUp =−=

The equations of motion are

Now Liouville’s theorem says that any phase space function A(x, p)
evolves as

},{ HA
dt
dA =

{ }
p
A

x
H

x
A

p
HHA ∂

∂
∂
∂−∂

∂
∂
∂=,

where the the {A, H} is the Poisson bracket given by

The evolution equation gives back Hamilton’s equation of motion: To see that take A(x,p) =x. Then

},{ Hxx
dt
dx ==

m
p

p
x

dx
dU

x
x

m
pHx =∂

∂−∂
∂=},{

mpx /=So we have Since p
x

∂
∂ = 0

Similarly if we take A(x,p) = p

},{ Hpp
dt
dp ==

)(},{ xF
dx
dU

p
p

dx
dU

x
p

m
pHp =−=∂

∂−∂
∂=

)(xFp =So we have

As expected evolution equation gives back Hamilton’s equation of
motion

Now define a two-dimensional phase space vector Γ=(x,p). Hamilton’s equation of motion
for this Γ is

},{ H
dt
d ΓΓ =

Now we define Liouville operator L such that iLΓ ={Γ ,H}

iL can be expressed as differential operator using Hamilton’s equation

p
p

x
x

p
xF

xm
p

pdx
dU

xm
p

px
H

xp
HiL

∂
∂+∂

∂=
∂
∂−∂

∂=
∂
∂−∂

∂=
∂
∂

∂
∂−∂

∂
∂
∂=

)(

The equation of motion in operator form is given by

ΓΓ =iL
dt
d

which can be solved to give

)0()(Γ=Γ iLtet

The operator exp(iLt) is called the classical propagator and the presence of i gives a
nice analogy with the QM propagator exp(-iHt/ħ)

Properties of Liouville Operator and propagator

It is Hermitian: L† = L Prove this? (Home work)

The propagator U(t) ≡ exp(iLt) is a unitary operator

U†(t)U(t) = I Prove this? (Home work)

The unitarity of the propagator implies time reversal symmetry in the equations of
motion. If the system is propagated forward in time up to a time t and then the clock is
allowed to run backwards for a time –t, the system will evolve according to the same
equations of motion but the direction of the velocities will be reversed, so that the
system will simply return to its initial condition.

U(-t) = exp(-iLt)

Now apply U(t) on Γ(0) to get Γ(t) followed by U(-t) : Γ(t) = U(t) Γ(0)

U(-t) U(t) Γ(0) = e-iLt eiLtΓ(0)= Γ(0)

So U(-t) U(t) = I ⇒ U(-t) = U†(t) since U(t) is unitary

Since U†(t) is equivalent to backward propagation in time, it
implies time reversibility since U†(t)U(t) = I

Another important property of the unitary operator U(t) is that its
determinant is 1 (Homework)

Unitarity of the propagator is consistent with the fact the volume in
phase space is preserved under Hamilton’s equation (Homework)

Trotter Theorem

We have the evolution of the phase space vector

)0()(Γ=Γ iLtet

In general it is difficult to evaluate exp(iLt) the reason for which will be clear from
the following discussion

21)(iLiL
p

xF
xm

piL +=∂
∂+∂

∂=

Remember iL can be written as

xm
piL ∂

∂=1 p
xFiL ∂

∂=)(2

Show that iL1 and iL2 do not commute : [iL1,iL2] ≠0 (Homework)

The difficulty in the any computation arises from the fact that iL1 and iL2 do not
commute : [iL1,iL2] ≠0

Since they don’t commute

exp(iL1t+iL2t) ≠ exp(iL1t)exp(iL2t)

We can see this easily if we expand both side by Taylor expansion

....2)
1

)(
2

()
2

)(
1

(2)
2

(2)
1

(
2
11

......22)
21

(
2
1)

21
(1

++++++=

+++++=

 tiLiLiLiLiLiLiLt

tiLiLtiLiLiLte

......22)
1

(
2
1)

1
(11 +++= tiLtiLtiLe22)

2
(

2
1)

2
(12 +++= tiLtiLtiLeNow

tiLiL
e

tiLiLiLiLtiLtiL

tiLtiLtiLtiLtiLetiLe

)
21

(

...2]2)(
2
12)(

2
1))([(1

...]22)(
2
1)(1...][22)(

2
1)(1[

212121

2211
21

+
≠

++++++=

++++++=

Trotter theorem comes to our rescue

MMtiL
e

MtiL
e

MtiL
e

M

tiLiL
e

∞→
=

+ 2/
2

/
1

2/
2lim)

21
(

For a proof see Techniques and Applications of Path Integral by L. S. Schulman

For large but finite M above equation can be approximated as

MMtiL
e

MtiL
e

MtiL
e

tiLiL
e

=
+ 2/

2
/

1
2/

2)
21

(

MtiL
e

MtiL
e

MtiL
e

MtiLiL
e

2/
2

/
1

2/
2

/)
21

(
≈

+

The expression on the left looks like approximate propagation of the system up to
time t by M application of the operator in the bracket. If we interpret t/M as single
time step, δt, then we have

2/
21

2/
2

)
21

(tiL
e

tiL
e

tiL
e

tiLiL
etiLe

δδδδδ ≈
+

=

This is the propagator U(δt) for the time step δt. Like U(t), U(δt) is unitary and
preserve the time reversibility of the dynamics

Show U†(δt)= U(-δt) = U-1(δt)
and U(-δt) U(δt) = I (Homework)

Now let us see what is the effect of the propagator U(δt) on the coordinates and

momenta of the particles

cxxx
c

e +=∂
∂

Some useful identity cxx
x

c
x

c +=+
∂
∂+∂

∂+ ...]
2
22

2
11[

)()(cxgxgx
c

e +=∂
∂

∑

∑

∞

=
=

∂
∂∞

=
=∂

∂

0

)(

!

1

)(
0 !

1)(

k
x

k
gkc

k

xg
k

x
c

k k
xgx

c
e

This is just the Taylor series of g(x+c) so

)(
2

2
)(

))(
2

(

)(
)(

2

)(
2

)(
2

)(
2)(

xF
m

tp
m

txtx

xFtp
m

tx

p
m

txp
xFt

e

xxm

pt
ep

xFt

e

xp
xFt

exm

pt
ep

xFt

extU

δδδ

δδ

δ
δ

δ
δ

δ
δ

δ

δ

++=

++=

+∂
∂

=

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

=

First operator acting on x has no effect, it
involves only momentum derivative

Second operator changes x to x+δt p/m

Last operator acting on x has no effect. It acts on
p and changes p to p+δt F(x)/2

Note that the action of exp(a∂/∂p) on x or g(x) has no
effect: it acts like identity operator

))](())0(([
2

)0(

))](
2

2
()([

2
)(

)))(
2

((
2

)(
2

)(
2

(
)(

2

))(
2

(
)(

2

)(
2

)(
2)(

txFxFtp

xF
m

tp
m

txFxFtptp

xFtp
m

txFtxFtp

p
m

txFtpp
xFt

e

xFtpxm

pt
ep

xFt

e

pp
xFt

exm

pt
ep

xFt

eptU

δδ

δδδδ

δδδδ

δδ
δ

δδ
δ

δ
δ

δ

δ

++=

++++=

++++=

++∂
∂

=

+∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

=

Similarly we can apply U(δt) on p to get

First operator acting on p changes p to
p+δt F(x)/2

Next operator acting on F(x) changes it to
F(x+δt p/m)

Last operator acting on p changes p
to p+δt F(x)/2

Argument of the second force in the
above expression is just x(δt)

r(δt) = r(0) + v(0) δt + 1/2 a(r(0)) δt 2 + b(t) δt 3 + O(δt 4) good to 2nd order in δt

Do the Taylor expand for velocities

v(δt) = v(0) + δt a(r(0)) + O(δt 2) good to 1st order in δt

To get v also accurate to the 2nd order in δt we consider starting from δt and applying
the rule backward in time (i.e. for a time –δt) so that we end up back at

r(0) = r(δt) -v(δt) δt + 1/2 a(r(δt)) δt 2

v(δt) = (r(δt) - r(0))/(δt) + δt /2 a(r(δt))

Now using the position equation we have

r(δt) - r(0)= v(0) δt + 1/2 a(r(0)) δt 2

So we have v(δt) = v(0) + δt /2 [a(r(0)) + a(r(δt))]

Combining we have

r(δt) = r(0) + v(0) δt + 1/2 a(r(0)) δt 2

v(δt) = v(0) + δt /2 [a(r(0)) + a(r(δt))] Velocity Verlet

Velocity Verlet algorithm

Recall the previous Position Verlet algorithm

r(t+ δt) = 2 r(t) - r(t- δt) + a(t) δt 2 + O(δt 4)

v(t) = (r(t+ δt) - r(t- δt))/(2 δt) + O(δt 2)

Verlet Algorithm: Flow Diagram

r

v

F

 t-δt t t+δt

Given current position and
position at end of previous
time step

Schematic from Allen & Tildesley, Computer Simulation of Liquids

Slide from Kofke Lecture

Verlet Algorithm: Flow Diagram

r

v

F

 t-δt t t+δt

Compute the force at the
current position

Schematic from Allen & Tildesley, Computer Simulation of Liquids

Slide from Kofke Lecture

Verlet Algorithm: Flow Diagram

r

v

F

 t-δt t t+δt

Compute new position
from present and previous
positions, and present force

Schematic from Allen & Tildesley, Computer Simulation of Liquids

Slide from Kofke Lecture

Verlet Algorithm : Flow Diagram

r

v

F

 t-2δt t-δt t t+δt

Advance to next time step,
repeat

Schematic from Allen & Tildesley, Computer Simulation of Liquids

Slide from Kofke Lecture

Verlet Algorithm: Loose Ends
• Initialization

– how to get position at “previous time step” when starting
out?

– simple approximation

• Obtaining the velocities
– not evaluated during normal course of algorithm
– needed to compute some properties, e.g.

• temperature
• diffusion constant

– finite difference

0 0 0() () ()t t t t tδ δ− = −r r v

[] 21
() () () ()

2
t t t t t O t

t
δ δ δ

δ
= + − − +v r r

Verlet Algorithm Performance Issues
• Time reversible

– forward time step

– replace δt with −δt

– same algorithm, with same positions and forces, moves
system backward in time

• Numerical imprecision of adding large/small
numbers

21() 2 () () ()
m

t t t t t t tδ δ δ+ = − − +r r r F

21

21

() 2 () () ()

() 2 () ()

() () (

()

)
m

m

t t t tt t

t t t t t t t

t

δ δ

δ

δ

δ δ− − −+ = − − +

− = − + +

r r r F

r r r F

21() () () () ()
m

t t t t t t t tδ δ δ+ − = − − +r r r r F

O(δt0) O(δt1)

O(δt1)

O(δt2)

O(δt1)

• Random direction
– randomize each component independently
– randomize direction by choosing point on spherical

surface

• Magnitude consistent with desired temperature.
Choices:
– Maxwell-Boltzmann:
– Same for y, z components

• Be sure to shift so center-of-mass momentum is
zero

()21
2() exp /x xprob v mv kTµ −

1
,

, ,

x i xN

i x i x x

P p

p p P

≡
→ −

∑

Initial Velocity

Leapfrog Algorithm

• Eliminates addition of small numbers O(δt2)
to differences in large ones O(δt0)

• Algorithm
1
2

1 1 1
2 2

() () ()

() () ()
m

t t t t t t

t t t t t t

δ δ δ

δ δ δ

+ = + +

+ = − +

r r v

v v F

Leapfrog Algorithm

• Eliminates addition of small numbers O(δt2)
to differences in large ones O(δt0)

• Algorithm

• Mathematically equivalent to Verlet
algorithm

1
2

1 1 1
2 2

() () ()

() () ()
m

t t t t t t

t t t t t t

δ δ δ

δ δ δ

+ = + +

+ = − +

r r v

v v F

1 1
2

() () () ()
m

t t t t t t t tδ δ δ δ + = + − + r r v F

Leapfrog Algorithm

• Eliminates addition of small numbers O(δt2) to
differences in large ones O(δt0)

• Algorithm

• Mathematically equivalent to Verlet algorithm

1
2

1 1 1
2 2

() () ()

() () ()
m

t t t t t t

t t t t t t

δ δ δ

δ δ δ

+ = + +

+ = − +

r r v

v v F

1 1
2

() () () ()
m

t t t t t t t tδ δ δ δ + = + − + r r v F

1
2

() () ()t t t t t tδ δ δ= − + −r r vr(t) as evaluated from
previous time step

Leapfrog Algorithm

• Eliminates addition of small numbers O(δt2)
to differences in large ones O(δt0)

• Algorithm

• Mathematically equivalent to Verlet
algorithm

1
2

1 1 1
2 2

() () ()

() () ()
m

t t t t t t

t t t t t t

δ δ δ

δ δ δ

+ = + +

+ = − +

r r v

v v F

1 1
2

() () () ()
m

t t t t t t t tδ δ δ δ + = + − + r r v F

1
2

() () ()t t t t t tδ δ δ= − + −r r vr(t) as evaluated from
previous time step

() 21() () () () ()
m

t t t t t t t tδ δ δ + = + − − + r r r r F

Leapfrog Algorithm

• Eliminates addition of small numbers O(δt2)
to differences in large ones O(δt0)

• Algorithm

• Mathematically equivalent to Verlet
algorithm

1
2

1 1 1
2 2

() () ()

() () ()
m

t t t t t t

t t t t t t

δ δ δ

δ δ δ

+ = + +

+ = − +

r r v

v v F

1 1
2

() () () ()
m

t t t t t t t tδ δ δ δ + = + − + r r v F

1
2

() () ()t t t t t tδ δ δ= − + −r r vr(t) as evaluated from
previous time step

() 21() () () () ()
m

t t t t t t t tδ δ δ + = + − − + r r r r F

21() 2 () () ()
m

t t t t t t tδ δ δ+ = − − +r r r F original Verlet algorithm

Leapfrog Algorithm: Flow Diagram

r

v

F

 t-δt t t+δt

Given current position, and
velocity at last half-step

Schematic from Allen & Tildesley, Computer Simulation of Liquids

r

v

F

 t-δt t t+δt

Compute current force

Schematic from Allen & Tildesley, Computer Simulation of Liquids

Leapfrog Algorithm: Flow Diagram

r

v

F

 t-δt t t+δt

Compute velocity at
next half-step

Schematic from Allen & Tildesley, Computer Simulation of Liquids

Leapfrog Algorithm: Flow Diagram

r

v

F

 t-δt t t+δt

Compute next position

Schematic from Allen & Tildesley, Computer Simulation of Liquids

Leapfrog Algorithm: Flow Diagram

r

v

F

 t-2δt t-δt t t+δt

Advance to next time step,
repeat

Schematic from Allen & Tildesley, Computer Simulation of Liquids

Leapfrog Algorithm: Flow Diagram

Leapfrog Algorithm Loose Ends

• Initialization
– how to get velocity at “previous time step” when

starting out?
– simple approximation

• Obtaining the velocities
– interpolate

1 1
0 0 0 2

() () ()
m

t t t t tδ δ− = −v v F

1 1
2 2

1
() () ()

2
t t t t tδ δ = + + − v v v

r(δt) = r(0) + v(0) δt + 1/2 a(r(0)) δt 2 + b(t) δt 3 + O(δt 4) good to 2nd order in δt

Do the Taylor expand for velocities

v(δt) = v(0) + δt a(r(0)) + + O(δt 2) good to 1st order in δt

To get V also accurate to the 2nd order in δt we consider starting from δt and
applying the rule backward in time (I.e. for a time –δt) so that we end up back at

r(0) = r(δt) -v(δt) δt + 1/2 a(r(δt)) δt 2

v(δt) = (r(δt) - r(0))/(δt) + δt /2 a(r(δt))

Now using the position equation we have

r(δt) - r(0)= v(0) δt + 1/2 a(r(0)) δt 2

So we have v(δt) = v(0) + δt /2 [a(r(0)) + a(r(δt))]

Combining we have

r(δt) = r(0) + v(0) δt + 1/2 a(r(0)) δt 2

v(δt) = v(0) + δt /2 [a(r(0)) + a(r(δt))] Velocity Verlet

Velocity Verlet algorithm

Velocity Verlet Algorithm

• Round off advantage of leapfrog, but better treatment
of velocities

• Algorithm

• Implemented in stages
– evaluate current force
– compute r at new time
– add current-force term to velocity (gives v at half-time

step)
– compute new force
– add new-force term to velocity

• Also mathematically equivalent to Verlet algorithm
(in giving values of r)

[]

21
2

1
2

() () () ()

() () () ()

m

m

t t t t t t t

t t t t t t t

δ δ δ

δ δ δ

+ = + +

+ = + + +

r r v F

v v F F

Velocity Verlet Algorithm Flow Diagram

r

v

F

 t-δt t t+δt

Given current position,
velocity, and force

Schematic from Allen & Tildesley, Computer Simulation of Liquids

r

v

F

 t-δt t t+δt

Compute new position

Schematic from Allen & Tildesley, Computer Simulation of Liquids

Velocity Verlet Algorithm Flow Diagram

r

v

F

 t-δt t t+δt

Compute velocity at half step

Schematic from Allen & Tildesley, Computer Simulation of Liquids

Velocity Verlet Algorithm Flow Diagram

r

v

F

 t-δt t t+δt

Compute force at new position

Schematic from Allen & Tildesley, Computer Simulation of Liquids

Velocity Verlet Algorithm Flow Diagram

r

v

F

 t-δt t t+δt

Compute velocity at full step

Schematic from Allen & Tildesley, Computer Simulation of Liquids

Velocity Verlet Algorithm Flow Diagram

r

v

F

 t-2δt t-δt t t+δt

Advance to next time step,
repeat

Schematic from Allen & Tildesley, Computer Simulation of Liquids

Velocity Verlet Algorithm Flow Diagram

Lines of code for Leap-frog Verlet algorithm

/* Carry out half-timestep update of atomic velocities using old forces. */

 velocity_step(n_atoms, atom_vels, atom_mass, delta, comp_forces);

 /* Carry out full-timestep update of atomic positions using half-timestep velocities. */

 position_step(n_atoms, atom_coords, atom_vels, atom_move,

 scaled_atom_coords, h_inv, h, delta, neigh_switch);

 /* Add short-range nonbonded forces to force accumulators. */

 for (i = 0; i < n_atoms; ++i) {

 for (k = 0; k < NDIM; ++k)

 comp_forces[i][k] += f_vdw_s[i][k] + f_coul_s[i][k];

 }

/* Carry out half-timestep update of atomic velocities using new forces. */

 velocity_step(n_atoms, atom_vels, atom_mass, delta, comp_forces);

void velocity_step(int n_atoms, double **atom_vels,

 double *atom_mass, double delta, double **comp_forces)

{

 int i, k;

 double delta_over_2m;

 /* Update velocities. */

 for (i = 0; i < n_atoms; ++i) {

 delta_over_2m = delta /(2*atom_mass[i]) ;

 for (k = 0; k < NDIM; ++k)

 atom_vels[i][k] += delta_over_2m * comp_forces[i][k];

 }

}

/* Carry out full-timestep update of atomic positions using half-timestep velocities. */

void position_step(int n_atoms, double **atom_coords,

 double **atom_vels,

 double **atom_move, double **scaled_atom_coords,

 double **h_inv, double **h, double delta, int neigh_switch)

{

 int i, k;

 double dr[NDIM];

 /* Update positions. */

 for (i = 0; i < n_atoms; ++i) {

 for (k = 0; k < NDIM; ++k) {

 dr[k] = delta * atom_vels[i][k];

 atom_coords[i][k] += dr[k];

} }

 /* If we are using periodic boundary conditions, calculate scaled atomic coordinates. */

 scaled_atomic_coords(n_atoms, h_inv, atom_coords, scaled_atom_coords);

 periodic_boundary_conditions(n_atoms, h, scaled_atom_coords, atom_coords);

}

/* Sample atomic velocities from a Maxwellian distribution. */

void sample_velocities(long *idum, double **atom_vels, int n_atoms,

 double *sqrt_kT_over_m)

{

 int i, k;

 double sqrt_kT_by_m;

 /* Choose Gaussian-distributed cartesian velocity components for each

 atom, with zero mean and standard deviation equal to sqrt(kT/m). */

 for (i = 0; i < n_atoms; ++i) {

 sqrt_kT_by_m = sqrt_kT_over_m[i];

 for (k = 0; k < NDIM; ++k)

 atom_vels[i][k] = sqrt_kT_by_m * gasdev(idum);

 }

}

Velocity sampling routine

Other Algorithms

Leap Frog: This can be derived from Verlet algorithm. Velocities at
half integer time step can be written as

r(t+ δt) = r(t) + δt v(t+ δt/2)

v(t- δt/2) = [r(t) - r(t- δt)]/ δt

v(t+ δt/2) = [r(t+δt) -r(t)]/ δt

From the above two equation we get the expression for the new
position

To update the velocity we use the expression from Verlet algorithm

v(t+ δt/2) = v(t- δt/2) + δt a(t)

Note that velocities are not defined at the same time as the positions, so KE and
PE are also not defined at the same time, and hence we can not directly compute

the total energy in the Leap-Frog scheme

Higher Order algorithm: Predictor-corrector

t tδ+

Predictor: use the position and its first n derivatives at time t (velocity, acceleration
etc.) to find the position and its first n derivatives (velocity, acceleration etc.) at time

Force evaluation: Use the predicted position to compute the force and acceleration at
the predicted positions. The resulting acceleration will be in general different from the
“predicted acceleration” in previous step.
Corrector: use the new acceleration to correct the predicted position, velocities and
acceleration.

2 3 4

() () () () () () ...
2 6 24

t t t
r t t r t v t t a t b t c t

δ δ δδ δ+ = + + + + +

2 3

() () () () () ...
2 6

t t
v t t v t a t t b t c t

δ δδ δ+ = + + + +

2

() () () () ...
2

t
a t t a t b t t c t

δδ δ+ = + + +

() () () ...b t t b t c t tδ δ+ = + +

The difference between the predicted (step 1) and calculated (step 2) acceleration
is given by

() () ()ca t t a t t a t tδ δ δ∆ + = + − +

0() () ()cr t t r t t c a t tδ δ δ+ = + + ∆ +

1() () ()cv t t v t t c a t tδ δ δ+ = + + ∆ +

2() () ()ca t t a t t c a t tδ δ δ+ = + + ∆ +

3() () ()cb t t b t t c a t tδ δ δ+ = + + ∆ +

and is used to correct the positions and velocities in the correction step as follows

Coefficients are tabulated for q-th order predictors (Gear): C0=1/6, C1 = 5/6, C2=1, C3
= 1/3

How to set the time step
• Adjust to get energy conservation to 1% of kinetic energy.
• Even if errors are large, you are close to the exact

trajectory of a nearby physical system with a different
potential.

• Since we don’t really know the potential surface that
accurately, this is satisfactory.

• Leapfrog algorithm has a problem with round-off error.
• Use the equivalent velocity Verlet instead:

r(t+ δt) = r(t) + δt [v(t) +(δt /2) a(t)]
v(t+ δt /2) = v(t)+(δt /2) a(t)
v(t+ δt)=v(t+ δt /2) + (δt /2) a(t+ δt)

Linear Stability analysis for Harmonic oscillator

xxF 2)(ω−=

=

+

+
)(

)(

)(

)(

tv

tx
S

ttv

ttx ω
δ

δω

−−
−−

=
2/1

)4/1(2/1
2

22

εε
εεε

S

Position Verlet scheme can be written as

where tωδε =and

42 <ε

π
ωδ

2/
/2

pT
t
<
< ωπ /2=pT

Powers of S is bounded if

(Home work)

How to increase time step?

Limiting factors: intra-molecular motions
Vibrational mode Wave number

(1/ λ) cm-1

Period Tp

(λ/c) fs
Tp/2π

(fs)
O-H, N-H stretch

C-H stretch
3200-3600

3000
9.8
11.1

3.1
3.5

C≡C, C≡N stretch
C=C stretch

2100
1700

15.9
19.6

5.1
6.2

H-O-H bend
O-C-O bend

1600
700

20.8
47.6

6.4
15

Freeze or constrain the fast motion: make all bond, angle involving H
rigid

How to increase time step?

Multiple time steps algorithm

Short-range interactions governs the intra-molecular motion, time scale
of which are very fast. In that time scale “long range” part of the
interaction hardly changes and need not be computed at same frequency
of the short range interactions.

longshort FFF +=

longmedshort FFFF ++=
or

a time step to compute short-range interactions
another time stop to compute medium range interactions
another time step to compute long-range interactions

Use Multiple time steps

fast med slowL L L L= + +

We can write the Liouville operator L as a sum of three operators that
characterize the scales of motions associated with different potential
components

()() exp fast med slowi t L L LiL te δδ + + =

Tuckerman, Berne, Martyna, JCP, 97, 1990 (1992)

• State variables
– each variable has an associated “conjugate” variable

• temperature ⇔ energy (kT,E)
• pressure ⇔ volume (P,V)
• chemical potential ⇔ number of molecules (µ,N)

– specification of state requires fixing one of each pair
– the dependent variable can be measured by the simulation

• Configuration variables
– position, orientation, momentum of each atom or molecule
– energy, forces and torques
– time

• Properties
– transport coefficients, free energy, structural quantities, etc.

• Molecular model parameters
– characteristic energy, size, charge

Physical Quantities in Molecular Simulation

Separation of the Energy

• Total energy is sum of kinetic and potential parts
– E(pN,rN) = K(pN) + U(rN)

• Kinetic energy is quadratic in momenta

• Kinetic contribution can be treated analytically in
partition function

• And it drops out of position averages

2() / 2N
i ii

K p p m= ∑

2

3

3

3

/ 2 ()1
!

()1 1
!

1

N
i

N

N

N

N

p mN N U r

h N

N U r
N

N

Q dp e dr e

dr e

Z

β β

β

− −

−
Λ

Λ

∑=

=

=

∫ ∫
∫

()1 1
!

()
N

N

N N U r
Z N

A dr A r e β−= ∫

2
h
mkTπ

Λ =
thermal de Broglie wavelength

configuration integral

Simple Averages 1. Energy

• Average energy

• Note thermodynamic connection

• Average kinetic energy

• Average potential energy
()1 1

!
()

N

N

N N U r
Z N

U dr U r e β−= ∫

3
(,)1 1

!
(,)

N N

N
N N N N E p r

Q h N
E dp dr E p r e β−= ∫ ∫

internal
ln (/)

(1/)

Q A kT
E E

kTβ
∂ ∂= − = =

∂ ∂

2 2

3
/ 21

2

3
2

i i
N

p p mN
mh

K dp e

NkT

β− ∑=

=

∑∫
Equipartition of energy: kT/2 for each degree of freedom

Simple Averages 2. Temperature

• Need to measure temperature in microcanonical
ensemble (NVE) simulations

• Define instantaneous kinetic temperature

• Thermodynamic temperature is then given as
ensemble average

• Relies on equipartition as developed in canonical
ensemble

• A better formulation has been developed recently
(Thermostating)

21
/

3 iT p m
Nk

= ∑

T T=

More generally, divide by number of
molecular degrees of freedom instead of 3N

Simple Averages 3a. Pressure

• From thermodynamics and bridge equation
()1

!
,

ln
NN U r

N
T N

A
P kT dr e

V V
β−∂ ∂ = − = ÷ ∂ ∂ ∫

pairs i,j

1

3 ij ij
NkT

P r f
V V

= + ×∑
rr

Simple Averages 4. Heat Capacity

• Example of a “2nd derivative” property

• Expressible in terms of fluctuations of the energy

• Other 2nd-derivative or “fluctuation” properties
– isothermal compressibility

2
2

2
, ,

2

()

1

()

v
V N V N

N N E

E A
C k

T

k dr dp Ee
Q

β

β
β

β
β β

β

−

 ∂ ∂ = = − ÷ ÷∂ ∂
∂= −

∂ ∫

22 2
vC k E Eβ = −

,

1
T

T N

V

V P
κ ∂ = − ÷∂

Note: difference between two O(N2)
quantities to give a quantity of O(N)

Dimensions and Units 1. Magnitudes

• Important extensive quantities
small in magnitude
– when expressed

in macroscopic units
• Small numbers are

inconvenient
• Two ways to magnify them

– work with atomic-scale
units

• ps, amu, nm or Å
– make dimensionless with

characteristic values
• model values of size,

energy, mass

Dimensions and Units 2. Scaling

• In simulations it is often convenient to express quantities such as
temperature, density, pressure and the like in reduced units. This
means that we choose a convenient unit of energy, length and mass
and then express all the other quantities in terms of these basic
units. A natural choice of our basic units is the following
– size σ
– energy ε
– mass m

In terms of these
basic units, all

other units follow

Why reduced Units?

• Many combinations of ρ, T, ε and σ all correspond to the same
state in reduced units. This is the law of corresponding states: the
same simulation can of a LJ model can be used to study the Argon
at 60 K and density 840 kg/m3 and Xe at 112 K and a density at
1617 kg/m3. In reduced unit both simulations corresponds to the
state point ρ = 0.5 and T = 0.5. Scaling by model parameters

• In reduced units almost all quantities of interest are of order 1 (say
between 10-3 and 103). Hence if we suddenly find very large (or
very small) number in our simulations, suspect some error
somewhere.

• Simulation results obtained in reduced units can be translated back
into real units.

See the following table

Conversion of reduced Units to real Units for LJ argon system: ε/kB = 119.8 K,

σ=3.405x10-10 m, m = 0.03994 kg/mol

Quantity Reduced
Units

Real Units

Temperatur
e

T* = 1 T = ε/kB = 119.8 K

Density ρ* = 1 ρ = 1680 kg/m3

Time δt* = 0.005 δt=1.09 x 10-14s

Pressure P*=1 P = 41.9 MPa

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Need for Molecular simulation
	Simulation Methodology
	Slide 16
	Slide 17
	What size is too big? What times are too long?
	Short history of Molecular Simulations
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	What are the forces?
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Statistical Ensembles
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Verlet Algorithm: Flow Diagram
	Slide 56
	Slide 57
	Verlet Algorithm : Flow Diagram
	Verlet Algorithm: Loose Ends
	Verlet Algorithm Performance Issues
	Slide 61
	Leapfrog Algorithm
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Leapfrog Algorithm: Flow Diagram
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Leapfrog Algorithm Loose Ends
	Slide 73
	Velocity Verlet Algorithm
	Velocity Verlet Algorithm Flow Diagram
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	How to set the time step
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Separation of the Energy
	Simple Averages 1. Energy
	Simple Averages 2. Temperature
	Simple Averages 3a. Pressure
	Simple Averages 4. Heat Capacity
	Dimensions and Units 1. Magnitudes
	Dimensions and Units 2. Scaling
	Why reduced Units?
	Slide 102

