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The classical expression for the partition function is given by 

In general it is not possible to compute the above integral either through 
MC or MD.                    is the Hamiltonian of the system. C = 1/(h3NN!)                      )( NqNpH

The ensemble average of any quantity A is given by 

Integration on p can be carried out easily as Hamiltonian has a 
quadratic dependence on p. The integration on q is hard to evaluate. 



Review 
We want to apply Monte Carlo simulation to evaluate the 

configuration integrals arising in statistical mechanics 
 
 

 Importance-sampling Monte Carlo is the only viable approach 
• unweighted sum of U with configurations generated according to 

distribution 
Markov processes can be used to generate configurations 

according to the desired distribution π(rN). 
• Given a desired limiting distribution, we construct single-step 

transition probabilities that yield this distribution for large samples 
• Construction of transition probabilities is aided by the use of 

detailed balance: 
• The Metropolis recipe is the most commonly used method in 

molecular simulation for constructing the transition probabilities 
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Markov Processes 
 Stochastic process 

• movement through a series of well-defined states in a way that 
involves some element of randomness 

• for our purposes,“states” are microstates in the governing 
ensemble 

Markov process 
• stochastic process that has no memory 
• selection of next state depends only on current state, and not on 

prior states 
• process is fully defined by a set of transition probabilities πij  

πij = probability of selecting state j next, given that presently in state i. 
Transition-probability matrix Π collects all πij  

 



Transition-Probability Matrix 

 Example 
• system with three states 

 
 
 

 Requirements of transition-probability matrix 
• all probabilities non-negative, and no greater than unity 
• sum of each row is unity 
• probability of staying in present state may be non-zero 

11 12 13

21 22 23

31 32 33

0.1 0.5 0.4
0.9 0.1 0.0
0.3 0.3 0.4

π π π
π π π
π π π

   
   Π ≡ =      
   

If in state 1, will move to state 3 
with probability 0.4 

If in state 1, will stay in state 1 
with probability 0.1 

Never go to state 3 from state 2 



Distribution of State Occupancies 

 Consider process of repeatedly moving from one state to the 
next, choosing each subsequent state according to Π 
• 1→ 2 → 2 → 1 → 3 → 2 → 2 → 3 → 3 → 1 → 2 → 3 → etc. 

 Histogram the occupancy number for each state 
• n1 = 3  π1 = 0.25 
• n2 = 5  π2 = 0.42 
• n3 = 4  π3 = 0.33 

 After very many steps, a limiting distribution emerges 
1 2 3 



 
 
 
 
 
 
 

 
 Quadrature formula 

 

n uniformly separated points 
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Suppose we want to evaluate such integral by using numerical 
quadrature, for example using Simpson’s rule 



Suppose we want to carry out the qudrature by evaluating the integrand 
on a mesh of points in the DN dimensional configuration space (3N for 
3-d system).  
 
 
If we take n equidistant points along each coordinate axis, the total 
number of point at which the integrand needs to be evaluated is nDN. 
 
If we have 100 particles in in 3-d and if we take n = 5 (very small ) then 
we have to evaluate 5300, this is impossible to compute and also not 
desirable.  



Monte Carlo Scheme (random sampling) 

 Stochastic approach 
 Same quadrature formula, different selection of points 

 
 
 
 
 
 
 
 
 
 
 
 

1
( )

n

i
i

b aI f x
n =

−
≈ ∑

n points selected from 
uniform distribution π(x) 
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As n →∞ this will give the correct value of the integral. However, like 
the previous quadrature method this is of little use because most of the 
computing is spent on points where Boltzmann factor is negligible 



Solution : Importance sampling 
Sample many points where Boltzmann factor is large and fewer points in 
other regions: basic idea behind Importance sampling 



Importance Sampling 

 Put more quadrature points in regions where integral receives its greatest 
contributions 

 Return to 1-dimensional example 
 
 

 Most contribution from  
region near x = 1 

 Choose quadrature points 
not uniformly, but according 
to distribution π(x) 
• linear form is one possibility 

 How to revise the integral to  
remove the bias? 
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The Importance-Sampled Integral 

 Consider a rectangle-rule quadrature with unevenly spaced 
abscissas 
 
 

 Spacing between points 
• reciprocal of local number of points per unit length 

 
 

 
 
 

 Importance-sampled rectangle rule 
• Same formula for MC sampling 
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Greater π → more points → smaller spacing 
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Choosing a Good Weighting Function 
MC importance-sampling quadrature formula 

 
 

 Do not want π(x) to be too much smaller or too much larger than 
f(x) 
• too small leads to significant contribution from poorly sampled region 
• too large means that too much sampling is done in region that is not 

(now) contributing much 

1
( )

1 ( )
( )

n
i

ii
x

f xI
n x

π
π=

≈ ∑

2xπ = 23xπ = 43xπ =

( )xπ

( )
( )

f x
xπ



Variance determines the choice of weighting function 
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Variance still goes as 1/n, but the magnitude of this variance can be 
reduced dramatically by choosing π(x) such that f(x)/ π(x)  is a smooth 
function of x. 
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Variance in Importance Sampling Integration 
 Choose π to minimize variance in average 

 
 
 
 
 
 
 
 
 

 Smallest variance in average corresponds to π(x) = c × f(x) 
• not a viable choice 
• the constant here is selected to normalize π 
• if we can normalize π we can evaluate 
• this is equivalent to solving the desired integral of f(x) 
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The classical expression for the partition function is given by 

In general it is not possible to compute the above integral either through 
MC or MD. The ensemble average of any quantity A is given by 

This is the ratio of two integrals and Metropolis showed that Monte 
Carlo methods can be used to efficiently compute the ratio.  

The Metropolis Method 



  

 

Let us define the probability density ρ of finding the system in a 
configuration (qN) 
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In terms of this probability density the configuration average of any 
quantity A is given by  

)()( NqNpNqNpANdqNdpA ∫= ρ

So if by some means we can generate points in the configuration space 
according the the above probability density we can evaluate the above 
average as   
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ki is the number of points generated per unit volume around a point qN 
and is equal to nρ (n is the total number of points) 
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The classical expression for the partition function is given by 

In general it is not possible to compute the above integral either through 
MC or MD. The ensemble average of any quantity A is given by 

This is the ratio of two integrals and Monte Carlo methods can be used 
to efficiently compute the ratio.  
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How to generate points in configuration space 



Metropolis Algorithm 1. 

 Prescribes transition probabilities to satisfy detailed balance, 
given desired limiting distribution 

 Recipe:   
From a state i… 
• with probability τij, choose a trial state j for the move (note: τij = τji)  
• if πj > πi, accept j as the new state 
• otherwise, accept state j with probability πj/πi 

generate a random number R on (0,1); accept if R < πj/πi 
• if not accepting j as the new state, take the present state as the next 

one in the Markov chain  
 
 Metropolis, Rosenbluth, Rosenbluth, Teller and Teller, 

J. Chem. Phys., 21 1087 (1953) 
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π(o→n) is the transition probability to go from o (old) to n (new) 
π(n→o) is the transition probability to go from n (new) to o (old) 
N(o) and N(n) are the probability of finding the system in configuration o and n 

Detailed balance requires 
           N(o) π(o→n) =N(n) π(n→o)  

Denote the transition matrix that determines the probability of 
performing  a trial move from o to n by α(o→n) where α is the 
underlying matrix of the Markov chain. We also denote the probability 
of accepting a trial move from o to n by acc(o→n). 

 π(o→n) = α(o→n) acc(o→n) 

In the original Metropolis scheme α was chosen to be symmetric :  
α(o→n)= α(n→o). In terms of α we have  

N(o) acc(o→n) =N(n) acc(n→o) 
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From the above equation we have 

Various choices of the acceptance probability satisfy the above condition. 
Metropolis choose the following  
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So the transition probability for going  from a state o to a state n is given 
by  
                  π(o→n) = α(o→n)                       N(n) ≥N(o) 
                               = α(o→n) [N(n)/N(o)]    N(n) <N(o) 
                 π(o→n) =1-∑n≠o π(o→n)  
 



The Algorithm 

Select a particle at random and calculate its energy U(rN) 
Give the particle a random displacement r’=r+dr and rotation if 
(linear and non-linear molecule and compute the new energy U(r’N) 
Accept the move from rN to r’N with probability  
                       acc(o→n) =min(1,exp{-β[U(r’N)-U(rN)]}) 

 



 for (j = 0; j < NDIM; ++j) { 

       dr[j] = (2.0 * ran3(i_ran) - 1.0) * dr_max; 

       mol_coords_trial[j] += dr[j]; 

     } 

Generating trial displacement 



Generating trial rotation 
 do { 

      mag2 = 0.0; 

      for (i = 1; i < 4; ++i){ 

         q[i] = (2.0 * ran3(i_ran) - 1.0) * du_max; 

         mag2 += SQR(q[i]); 

         } } while (mag2 > 1.0); 

   q[0] = sqrt(1 - mag2); 

/* Compute the elements of the rotation matrix. */ 

   a11 = SQR(q[0]) + SQR(q[1]) - SQR(q[2]) - SQR(q[3]); 

   a12 = 2.0 * q[1] * q[2] + 2.0 * q[0] * q[3]; 

   a13 = 2.0 * q[1] * q[3] - 2.0 * q[0] * q[2]; 

   a21 = 2.0 * q[1] * q[2] - 2.0 * q[0] * q[3]; 

   a22 = SQR(q[0]) - SQR(q[1]) + SQR(q[2]) - SQR(q[3]); 

   a23 = 2.0 * q[2] * q[3] + 2.0 * q[0] * q[1]; 

   a31 = 2.0 * q[1] * q[3] + 2.0 * q[0] * q[2]; 

   a32 = 2.0 * q[2] * q[3] - 2.0 * q[0] * q[1]; 

   a33 = SQR(q[0]) - SQR(q[1]) - SQR(q[2]) + SQR(q[3]); 



Monte Carlo Simulation 
MC techniques applied to molecular simulation 
 Almost always involves a Markov process 

• move to a new configuration from an existing one 
according to a well-defined transition probability 

 Simulation procedure 
• generate a new “trial” configuration by making a 

perturbation to the present configuration 
• accept the new configuration based on the ratio of 

the probabilities for the new and old 
configurations, according to the Metropolis 
algorithm 

• if the trial is rejected, the present configuration is 
taken as the next one in the Markov chain 

• repeat this many times, accumulating sums for 
averages 

new

old

U

U

e

e

β

β
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State k 

State k+1 



Polymers are long molecular chains with chemically connected 
atomic groups (“monomers”)   

Some of the common polymer chains 

Poly(ethylene) 

Number of monomer units in a chain 
is very large: N >>1 
For laboratory synthesized polymer 
N=102-104 

For biological polymer such as DNA  
N = 109-1010 



Some fundamental properties of polymeric systems 

The chain structure of constituent molecules 
The monomer units do not have freedom of independent translational 
motion and hence polymers do not have translational entropy (“poor in 
entropy) 
Polymer chains are flexible (this is one of the main reasons for their 
special properties). This also make their study difficult as they can adopt 
various conformations. 
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Various kind of polymer architecture 

Linear polymer: 
●Homopolymer: linking together N monomers of only one 
chemically distinct type 
 
Copolymer: linking together N monomers of two or more 
chemically distinct types 

 
Branched Polymer: 
 
Star Polymer :  
 
 
Hyper branched Polymer : Dendrimer 



Flexibility mechanism of a polymer chain 

Rotational-isomeric flexibility mechanism 
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Trans conformation of PE chain 

At T=0 all the monomers will 
have trans conformation 

φ 
γ 

c c 

c 

Αt non-zero temperature rotation with fixed γ by 
changing the angle of internal rotation φ  is 
possible. Any non zero φ ngives gives 
conformations other than trans. This kind of 
flexibility is called rotational isomeric flexibility 
mechanism. Different φ  corresponds to different 
rotational isomers.  



Persistence flexibility mechanism 

When rotational isomers are not allowed thermal vibrations around the 
equilibrium conformation play important role 

For poly-peptide and DNA molecules their conformation are stabilized  
by hydrogen bonds and internal rotation is not possible. In such case 
thermal vibrations around the equilibrium conformation gives rise to 
the persistence flexibility mechanism. 

Freely-jointed flexibility mechanism   

In this case flexibility arises from the free rotation of the junction points. 
Angle can take any value. Not very realistic , good for model theoretical 
calculations 



Different 
length and 
time scale in 
polymeric 
systems 
(similar to 
many other 
soft-matter 
systems) 

Kremer,  
NATO ASI  
School 1999 



Simplest model of polymer: Random walk model 

The simplest model of a polymer is a chain of like monomers, of length 
a, where each link is completely free to rotate in any direction.  

R 
Model of freely jointed chain 

A polymer of N such links is equivalent to a random walk of N steps of 
length a.  

û1 û2 

ûN 



In one dimension the probability distribution of arriving at X after N 
steps starting from the origin is given by the binomial distribution  
                                                     
                                    P(X, N) =  Pbin(m, N)                              
  
with X = (2m −N)a (m forward steps minus N −m backwards steps). 
Using the properties of the binomial distribution we have  
 
              <X>= 0,                         <X2>= Na2.  
End-end distance                Root mean square End-end distance 
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The probability density p(X) (such that p(X)dX gives the probability of 
ending between X and X +dX)is  

with         = Na2. The large N results also follow from the central limit 
theorem. Since X =         is the sum of N independent random variables, 
for large N the distribution is Gaussian, with variance Na2. 
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In 3-d we have  

The distribution looks like 

Probability distribution function that the end-to-end vector of a chain of 
N-link is         is given by (see Reif Sec. 1.10) 
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Using large N limit and using the Gaussian approximation 
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The distribution becomes 



Some important definition before we proceed further 

For an ideal chain <R2> ~ N ~L 

Kuhn length of a polymer chain is defined as  

L
Rl ><

=
2

at large L 

Persistence length 

)/(exp~cos
p

ls−θ

The orientational correlations of the chain as a function of the contour 
distance obey    

θ is the angle between unit vectors u(0) and u(s). lp is the persistence 
length 

Kuhn  length 



The freely jointed chain is an oversimplified model for a polymer. Two 
effects we might want to include are the stiffness against bond bending 
and the hard-core repulsion of the atomic cores.  
  
Stiff polymers To model the stiffness of a polymer chain we restrict the free rotation of 
each bond by assuming there is an energy cost for a nonzero angle between successive 
bonds. The simplest model is to assume the energy depends on the angle between the 
bonds, but not on the orientation of the plane formed by the bonds. The Kratky-Porod 
model supposes the energy for each bond pair is proportional to ,  
 
 
with  the direction of the j th link (a unit vector). The Hamiltonian of this model is (for a 
polymer of N +1 monomers)  
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j
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More realistic model (including the bond stiffness) 
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Kratky Porod Hamiltonian 
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The model can be exactly solved to give the following expression for 
root mean-square end-to-end distance 



Different coarse-grained models of polymer  

SAW on lattice 

Pearl necklace 

Bead spring model 

Most widely used model is the self-avoiding walk (SAW) on lattice. 
Each lattice site can be occupied only once. It is possible to introduce 
nearest-neighbor interaction and other generalization. 

Kremer and Binder Comp. Phys. Reports, 7, 259 (1988) 

Pearl-necklace model is the 
direct generalization of the 
SAW for the continuous 
space. The chain consists of 
hard sphere of diameter and 
fixed bond length. 



Random  
Walk (RW) 

Non-reversible RW 

Self-avoiding Walk  
(SAW) 

Construction of 22-step 
random walk (RW) on square 
lattice. Sites are labeled in the 
order in which they are visited 
starting from the origin. At 
each step we add at random an 
elementary lattice vector 
denoted by arrows.  

NRRW is same as RW, 
but immediate reversal is 
forbidden   

Visiting any lattice site 
more than once is not 
allowed 



Why lattice model: Lack of self-averaging 
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Remember end-end distribution is Gaussian in 3-d for freely joined chain 

We have  mean square end-to-end distance <R2>= Na2 

So the mean square fluctuation in R2 is  

This is constant! Which imply lack of self-averaging 

Remember from your statmech: relative mean square fluctuation of thermodynamic 
quantities approaches zero when the number of degrees of freedom approach infinity.  
Like mean square fluctuation in average energy E = <H>,  
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A large number of independent samples to be generated in simulation 



Various examples of Dynamic Monte Carlo Algorithm 

end bond 

Kink-jump crankshaft 

Bonds indicated as wavy lines are moved to 
new positions (broken lines), other bonds 
are not moved 

Reptation (Slithering snake) algorithm Pivot (wiggle) algorithm 

The sampling of equilibrium conformations of polymer is usually time consuming 
because dynamics are dominated by topological constraints. Many “unphysical” trial 
moves are used for enhanced sampling and equilibration.  



Trial Moves 

 A great variety of trial moves can be made 
 Basic selection of trial moves is dictated by choice of ensemble 

• almost all MC is performed at constant T 
no need to ensure trial holds energy fixed 

• must ensure relevant elements of ensemble are sampled 
all ensembles have molecule displacement, rotation; atom displacement 
isobaric ensembles have trials that change the volume 
grand-canonical ensembles have trials that insert/delete a molecule 

 Significant increase in efficiency of algorithm can be achieved 
by the introduction of clever trial moves 
• reptation, crankshaft moves for polymers 
• multi-molecule movements of associating molecules 
• many more 



Displacement Trial Move  
1. Specification 

 Gives new configuration of same volume and number of molecules 
 Basic trial: 

•   
 

 



Displacement Trial Move  
1. Specification 

 Gives new configuration of same volume and number of molecules 
 Basic trial: 

• displace a randomly selected atom to a point chosen with uniform 
probability inside a cubic volume of edge 2δ centered on the current 
position of the atom 

 

Select an atom 
at random 



Displacement Trial Move  
1. Specification 

 Gives new configuration of same volume and number of molecules 
 Basic trial: 

• displace a randomly selected atom to a point chosen with uniform 
probability inside a cubic volume of edge 2δ centered on the current 
position of the atom 

 
2δ 

Consider a 
region about it 



Displacement Trial Move  
1. Specification 

 Gives new configuration of same volume and number of molecules 
 Basic trial: 

• displace a randomly selected atom to a point chosen with uniform 
probability inside a cubic volume of edge 2δ centered on the current 
position of the atom 

 

Consider a 
region about it 



Displacement Trial Move  
1. Specification 

 Gives new configuration of same volume and number of molecules 
 Basic trial: 

• displace a randomly selected atom to a point chosen with uniform 
probability inside a cubic volume of edge 2δ centered on the current 
position of the atom 

 
 Move atom to 

point chosen 
uniformly in 
region 



Displacement Trial Move  
1. Specification 

 Gives new configuration of same volume and number of molecules 
 Basic trial: 

• displace a randomly selected atom to a point chosen with uniform 
probability inside a cubic volume of edge 2δ centered on the current 
position of the atom 

 

Consider 
acceptance of new 
configuration 

? 



Displacement Trial Move  
1. Specification 

 Gives new configuration of same volume and number of molecules 
 Basic trial: 

• displace a randomly selected atom to a point chosen with uniform 
probability inside a cubic volume of edge 2δ centered on the current 
position of the atom 

 Limiting probability distribution 
• canonical ensemble 

 
 
 

• for this trial move, probability ratios are the same in other common 
ensembles, so the algorithm described here pertains to them as well 

( )1( )
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N
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Examine underlying 
transition 
probabilities to 
formulate 
acceptance criterion 
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Displacement Trial Move  
2. Analysis of Transition Probabilities 

 Detailed specification of trial move and transition probabilities 

Event
[reverse event]

Probability
[reverse probability]

Select molecule k
[select molecule k]

1/N
[1/N]

Move to rnew

[move back to rold]
1/v

[1/v]

Accept move
[accept move]

min(1,χ)
[min(1,1/χ)]

Forward-step 
transition 
probability 

v = (2δ)d 

1 1 min(1, )
N v

χ× ×

Reverse-step 
transition 
probability 

11 1 min(1, )
N v χ× ×

χ is formulated to satisfy 
detailed balance 



Displacement Trial Move 
3.  Analysis of Detailed Balance 

Detailed balance 

Forward-step 
transition 
probability 

1 1 min(1, )
N v

χ× ×
Reverse-step 
transition 
probability 

11 1 min(1, )
N v χ× ×

πi πij πj πji = 

Limiting 
distribution 
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Displacement Trial Move 
3.  Analysis of Detailed Balance 

Detailed balance 

11 1 1 1min(1, ) min(1, )
old newU N U N

N N

e d e d
Z N v Z N v

β β

χχ
− −   × × = × ×      

r r

Forward-step 
transition 
probability 

1 1 min(1, )
N v

χ× ×
Reverse-step 
transition 
probability 

11 1 min(1, )
N v χ× ×

πi πij πj πji = 

Limiting 
distribution 
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Displacement Trial Move 
3.  Analysis of Detailed Balance 

Detailed balance 

Forward-step 
transition 
probability 

1 1 min(1, )
N v

χ× ×
Reverse-step 
transition 
probability 

11 1 min(1, )
N v χ× ×

πi πij πj πji 

old newU Ue eβ βχ− −=

= 

( )new oldU Ue βχ − −= Acceptance probability 

11 1 1 1min(1, ) min(1, )
old newU N U N

N N

e d e d
Z N v Z N v

β β

χχ
− −   × × = × ×      

r r



Displacement Trial Move 
5. Tuning 

 Size of step is adjusted to reach a target rate of acceptance of 
displacement trials 
• typical target is 50% 
• for hard potentials target may be lower (rejection is efficient) 

Large step leads to 
less acceptance but 

bigger moves 

Small step leads to 
less movement but 
more acceptance 



Volume-change Trial Move  
1. Specification 

 Gives new configuration of different volume and same N and sN 
 Basic trial: 

•   



Volume-change Trial Move  
1. Specification 

 Gives new configuration of different volume and same N and sN 
 Basic trial: 

• increase or decrease the total system volume by some amount within ±δV, 
scaling all molecule centers-of-mass in proportion to the linear scaling of 
the volume 

 −δV 

+δV 

Select a random 
value for volume 
change 



Volume-change Trial Move  
1. Specification 

 Gives new configuration of different volume and same N and sN 
 Basic trial: 

• increase or decrease the total system volume by some amount within ±δV, 
scaling all molecule centers-of-mass in proportion to the linear scaling of 
the volume 

 

Perturb the total 
system volume 



Volume-change Trial Move  
1. Specification 

 Gives new configuration of different volume and same N and sN 
 Basic trial: 

• increase or decrease the total system volume by some amount within ±δV, 
scaling all molecule centers-of-mass in proportion to the linear scaling of 
the volume 

 

Scale all positions in 
proportion 



Volume-change Trial Move  
1. Specification 

 Gives new configuration of different volume and same N and sN 
 Basic trial: 

• increase or decrease the total system volume by some amount within ±δV, 
scaling all molecule centers-of-mass in proportion to the linear scaling of 
the volume 

 

Consider acceptance 
of new configuration ? 



Volume-change Trial Move  
1. Specification 

 Gives new configuration of different volume and same N and sN 
 Basic trial: 

• increase or decrease the total system volume by some amount within ±δV, 
scaling all molecule centers-of-mass in proportion to the linear scaling of 
the volume 

 Limiting probability distribution 
• isothermal-isobaric ensemble 

 
 
 
 

( ) ( )( )1( )
NU V PVN N NV e V d dV

β β
π

− −
=

∆
s

s s

Examine underlying 
transition 
probabilities to 
formulate 
acceptance criterion 

Remember how volume-
scaling was used in 
derivation of virial formula 



Volume-change Trial Move  
2. Analysis of Transition Probabilities 

 Detailed specification of trial move and transition probabilities 

Event
[reverse event]

Probability
[reverse probability]

Select Vnew

[select Vold]
1/(2 δV)

[1/(2 δV)]

Accept move
[accept move]

Min(1,χ)
[Min(1,1/χ)]

Forward-step 
transition 
probability 

1 min(1, )
2 V

χ
δ

×

Reverse-step 
transition 
probability 

11 min(1, )
2 V χδ

×

χ is formulated to satisfy 
detailed balance 



Volume-change Trial Move 
3.  Analysis of Detailed Balance 

Detailed balance 

Forward-step 
transition 
probability 

Reverse-step 
transition 
probability 

πi πij πj πji = 

Limiting 
distribution 

1 min(1, )
2 V

χ
δ

× 11 min(1, )
2 V χδ

×

( ) ( )( )1( )
NU V PVN N NV e V d dV

β β
π

− −
=

∆
s

s s



Volume-change Trial Move 
3.  Analysis of Detailed Balance 

Detailed balance 

Forward-step 
transition 
probability 

Reverse-step 
transition 
probability 

πi πij πj πji = 

Limiting 
distribution 

1 min(1, )
2 V

χ
δ

× 11 min(1, )
2 V χδ

×

( ) ( )( )1( )
NU V PVN N NV e V d dV

β β
π

− −
=

∆
s

s s

( ) ( )( ) ( )
11 1min(1, ) min(1, )

2 2

old old new newN NU PV old U PV new

N N

e V e V

V V

β β

χχ
δ δ

− + − +   
      × = ×      ∆ ∆   

      



Volume-change Trial Move 
3.  Analysis of Detailed Balance 

Detailed balance 

Forward-step 
transition 
probability 

Reverse-step 
transition 
probability 

πi πij πj πji = 

1 min(1, )
2 V

χ
δ

× 11 min(1, )
2 V χδ

×

( ) ( )( ) ( )
11 1min(1, ) min(1, )

2 2

old old new newN NU PV old U PV newe V e V

V V

β β

χχ
δ δ

− + − +   
      × = ×      ∆ ∆   

      

( ) ( )( ) ( )old old new newN NU PV old U PV newe V e Vβ βχ− + − +=

exp ( ) ln( / )new oldU P V N V Vχ β = − ∆ + ∆ +  Acceptance probability 



Volume-change Trial Move 
4.  Alternative Formulation 

 Step in ln(V) instead of V 
• larger steps at larger volumes, smaller steps at smaller volumes 

Limiting 
distribution ( ) ( )( ) 1( n) l1 NU V PVN N NV e V d d V

β β
π +− −

=
∆

s
s s

( )lnVnew oldV V eδ=Trial move 

1exp ( ) ( ) ln( / )new oldU P V N V Vχ β = ∆ + +− ∆ + 

Acceptance 
probability 
min(1,χ) 

( ) ( ) ( )ln ln lnnew oldV V Vδ= +



Summary 

Monte Carlo simulation is the application of MC integration 
to molecular simulation 

 Trial moves made in MC simulation depend on governing 
ensemble 
• many trial moves are possible to sample the same ensemble 

 Careful examination of underlying transition matrix and 
limiting distribution give acceptance probabilities 
• particle displacement 
• volume change 

 












∫ −
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( ) )/)(exp()/)(exp(
8

11
2
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NN

B

NNNN

N −∫=
π

In terms of the probability density we can write the free energy also 

Use the following identity 

( )ln( exp ( ) / )N N N N N N
B BF k T dp dq H p q k T p qρ =  ∫

To get 

The configuration with high energy make a significant contribution to the integral (to 
free energy) due to exponential term. A MC or MD 
preferentially samples lower-energy regions of phase space. An  Ergodic trajectory 
would of course visit all the phase space, but in practice will never be adequately 
sampled by real simulation. So Computed free energy will be poorly converged and 
inaccurate  



Metropolis Algorithm 2. 
 What are the transition probabilities for this algorithm? 

• Without loss of generality, define i as the state of greater probability 
 

 
 

 
 
 

 Do they obey detailed balance? 
 
 
 
 
 

 Yes, as long as the underlying matrix Τ of the Markov chain is symmetric 
• this can be violated, but acceptance probabilities must be modified 

i jπ π>

in general:  min ,1j
ij ij

i

π
π τ

π
  

=  
  

?

?

i ij j ji

j
i ij j ji

i

ij ji

π π π π

π
π τ π τ

π
τ τ

=

=

=

1

j
ij ij

i

ji ji

ii ij
j i

π
π τ

π
π τ

π π
≠

= ×

=
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