@article{ISI:000355101300021, abstract = {Experiments find coherent information transfer through biological groups on length and time scales distinctly below those on which asymptotically correct hydrodynamic theories apply. We present here a new continuum theory of collective motion coupling the velocity and density fields of Toner and Tu to the inertial spin field recently introduced to describe information propagation in natural flocks of birds. The long-wavelength limit of the new equations reproduces the Toner-Tu theory, while at shorter wavelengths (or, equivalently, smaller damping), spin fluctuations dominate over density fluctuations, and second-sound propagation of the kind observed in real flocks emerges. We study the dispersion relation of the new theory and find that when the speed of second sound is large, a gap in momentum space sharply separates first-from second-sound modes. This gap implies the existence of silent flocks, namely, of medium-sized systems across which information cannot propagate in a linear and underdamped way, either under the form of orientational fluctuations or under that of density fluctuations, making it hard for the group to achieve coordination.}, article-number = {218101}, author = {Cavagna, Andrea and Giardina, Irene and Grigera, Tomas S. and Jelic, Asja and Levine, Dov and Ramaswamy, Sriram and Viale, Massimiliano}, doi = {10.1103/PhysRevLett.114.218101}, eissn = {1079-7114}, issn = {0031-9007}, journal = {PHYSICAL REVIEW LETTERS}, month = {MAY 27}, number = {21}, orcid-numbers = {cavagna, andrea/0000-0003-2057-5971 Giardina, Irene/0000-0001-6900-1739 Viale, Massimiliano/0000-0003-4808-4103 Grigera, Tomas/0000-0002-3165-4838}, researcherid-numbers = {cavagna, andrea/B-6400-2008 Giardina, Irene/O-4211-2015 }, title = {Silent Flocks: Constraints on Signal Propagation Across Biological Groups}, unique-id = {ISI:000355101300021}, volume = {114}, year = {2015} }