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Berry phases and curvatures

A “Berry phase” is a phase angle (i.e., running between 0 and 2π) that de-

scribes the global phase evolution of a complex vector as it is carried around

a path in its vector space. It can also be referred to as a “geometric phase”

or a “Pancharatnam phase,” the latter after early work by Pancharatnam

(1956). The concept was systematized and popularized in the 1980s by Sir

Michael Berry, notably in a seminal paper (Berry, 1984), and by Berry and

others in a series of subsequent publications that are well represented in

the edited volume of Wilczek and Shapere (1989). A formal discussion of

Berry phases and related concepts (fiber bundles, connections, Berry cur-

vatures, etc.) can be found in modern texts on topological physics such as

those by Frankel (1997), Nakahara (2003), and Eschrig (2011). Since then,

Berry phases have found broad application in diverse realms of science in-

cluding atomic and molecular physics, classical optics, wave mechanics, and

condensed-matter physics.

Our goal here is to introduce the concept of the Berry phase and ex-

plain how it enters into the quantum-mechanical band theory of electrons

in crystals. We will begin by introducing the Berry phase in its abstract

mathematical form, and then discuss its application to the adiabatic dy-

namics of finite quantum systems. After these preliminaries, we will turn

to the main theme of this book, where the complex vector in question is a

Bloch wavevector, and the path lies in the space of wavevectors k within the

Brillouin zone.

3.1 Berry phase, gauge freedom, and parallel transport

As indicated above, a Berry phase is a quantity that describes how a global

phase accumulates as some complex vector is carried around a closed loop in

a complex vector space. Since we are only interested in phases, we can take
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Figure 3.1 Illustration of the evolution of some complex unit vector ∣u⟩
around a path in parameter space. The first and last points ∣u0⟩ and ∣uN ⟩

are identical.

these complex vectors to be unit vectors, and we will typically identify them

with the ground-state wavefunction of some quantum system. For example,

the vector could represent the ground state of the electrons in a molecule

with fixed nuclear coordinates, or that of a spinor in an external magnetic

field. We then consider a gradual variation that returns the system to its

starting point at the end of the loop. The situation is sketched in Fig. 3.1,

where states ∣u0⟩, ..., ∣u7⟩ correspond to the N = 8 points around the loop

(with ∣u8⟩ = ∣u0⟩).

For a concrete example, consider the triatomic molecule shown in Fig. 3.2.

It is almost equilateral, but a distortion has been introduced so as to shorten

one of the three bonds slightly, as indicated by the “double bond” in the

figure. We have in mind a continuous deformation path, with each of the

three bonds being gradually shortened and lengthened in such a way that

the illustrations in Fig. 3.2 represent snapshots along the way.1 We then

wish to consider the phase evolution of the ground state of this molecule as

it is carried around the loop. Or, consider the evolution of the ground state

of a spinor (e.g., an electron or proton) in an external magnetic field as the

direction of this field varies around some closed loop on the unit sphere. In

each case, the Berry phase will encode some information about the phase

evolution of the ground state along the path in question.

3.1.1 Discrete formulation

Let’s start with a discrete formulation, in which N representative vectors

∣u0⟩ to ∣uN−1⟩ are chosen around this loop, as for example with N = 3 in

Fig. 3.2. Note that ∣uN ⟩ and ∣u0⟩ are identical. The Berry phase φ is then

1 Note that the molecule itself is not rotating; only the pattern of shortened bonds is rotating.
This is often referred to as a “pseudorotation” and plays an important role in the physics of
Jahn-Teller effects in molecules.



64 Berry phases and curvatures

(a) (b) (c) (d) 

Figure 3.2 Triangular molecule going though a sequence of distortions in
which first the bottom, then the upper-right, then the upper-left bond is
the shortest and strongest of the three. The configurations in panels (a)
and (d), representing the beginning and end of the loop, are identical.

defined to be

φ = −Im ln [⟨u0∣u1⟩⟨u1∣u2⟩...⟨uN−1∣u0⟩] . (3.1)

Recall that for a complex number z = ∣z∣ eiϕ, the expression Im ln z = ϕ just

takes the complex phase and discards the magnitude. Thus, the Berry phase

φ is minus the complex phase of the product of inner products of the state

vectors at neighboring points around the loop. (Note that the sign convention

is not universal, and some authors define the Berry phase without the minus

sign in Eq. (3.1).)

Let’s first consider a simple example based on the triatomic molecule

of Fig. 3.2. Suppose that there are two degenerate states ∣1⟩ and ∣2⟩ for

the equilateral triangle, but that the distortion causes a breaking of this

degeneracy at all points along the loop. Following the lower-energy of the

two states, we might find that these are

∣ua⟩ = ∣ud⟩ =
1√
2
(

1

1
) , ∣ub⟩ =

1√
2
(

1

e2πi/3) , ∣uc⟩ =
1√
2
(

1

e4πi/3) . (3.2)

corresponding to the distorted states in Fig. 3.2, where the top and bottom

elements in the column vector are the amplitudes on basis states ∣1⟩ and ∣2⟩

respectively. A trivial computation then shows that the corresponding Berry

phase is

φ = −Im ln [⟨ua∣ub⟩⟨ub∣uc⟩⟨uc∣ua⟩] = −Im ln [(
eπi/3

2
)

3
] = −π (3.3)

(or equivalently φ = π, since a phase is only well-defined modulo 2π.) Inci-

dentally, you can see that the setting in a complex vector space is important;

in the case of real vectors, the global product in Eq. (3.1) is always real, so

the Berry phase is always 0 or π depending on the sign of that product.2

It is probably not yet obvious why the Berry phase defined in this way is

2 For the states in Eq. (3.2) it happens that φ = π, but this is an artifact of the special form of
those states.
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a useful quantity, but at least it is mathematically well-defined in the sense

that it is independent of the choices made for the phases of the individual

∣uj⟩. That is, suppose we introduce a new set of N states

∣ũj⟩ = e
−iβj ∣uj⟩ (3.4)

(βj is real) related to the old ones by a j-dependent phase rotation βj , an

operation that is known as a “gauge transformation” in the Berry-phase

context.3 Then the Berry phase φ is unaffected, since any given vector, such

as ∣u2⟩, appears in Eq. (3.1) once in a ket and once in a bra, so that the

phases e±iβj cancel out. For example, we can replace ∣uc⟩ in Eq. (3.2) by the

physically equivalent vector

∣uc⟩ =
1√
2
(
e2πi/3

1
) (3.5)

and confirm that the final result of the computation in Eq. (3.3) is the

same. The gauge-invariance of the Berry phase strongly hints that it may

be connected with some physically observable phenomena.

We have passed over a subtlety above, namely the need to impose a branch

choice on the definition of Im ln z, as by restricting it to the interval −π <

φ ≤ π. In this case, Eq. (3.1) always results in a Berry phase lying in this

interval, while the nominally equivalent expression

φ = −
N−1

∑
j=0

Im ln ⟨uj ∣uj+1⟩ (3.6)

can yield a result that differs by an integer multiple of 2π. If we take the

viewpoint that φ is just a shorthand for a phase angle, so that only cosφ

and sinφ matter, then this distinction can be safely ignored. However, in

any practical implementation the phase angles are normally mapped onto

some interval on the real axis, and we can only claim that the Berry phase

should be gauge-invariant modulo 2π in the context of an expression like

that of Eq. (3.6).

You may be wondering about the magnitude information that has been

discarded in Eqs. (3.1) and (3.6). Each inner product has a magnitude some-

what smaller than unity, so a partner function −Re ln ∏j⟨uj ∣uj+1⟩ would

measure the extent to which the character of the states varies from point

to point along the loop, whereas the Berry phase φ is instead related to the

relative phases along the loop.

3 The name is chosen in close analogy to the use of the same term in the theory of
electromagnetism. A particular choice of gauge may influence the intermediate results of a
calculation, but should not affect any physically meaningful prediction.
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The concept of a Berry phase is also naturally described in terms of a

notion of parallel transport, defined in the present context as follows. Suppose

we have a chain of states ∣u0⟩, ∣u1⟩, ..., ∣uN ⟩ with no special phase relations

between them. We define a new set of “parallel transported” states ∣ū0⟩, ∣ū1⟩,

... to be the same as the previous set, except with their phases adjusted as

follows. Set ∣ū0⟩=∣u0⟩. Then choose ∣ū1⟩ to be ∣u1⟩ times a phase chosen such

that ⟨ū0∣ū1⟩ is real and positive. Similarly, choose ∣ū2⟩ such that ⟨ū1∣ū2⟩ is

also real and positive, and continue in this way around the loop, imposing

the constraint

Im ln ⟨ūj ∣ūj+1⟩ = 0 (3.7)

on each link connecting neighboring points. Conclude by choosing ∣ūN ⟩ such

that its product with ⟨ūN−1∣ is real and positive. This generates what is

known as a parallel transport gauge.4

Assuming that the states form a closed loop as in Fig. 3.1, the two vectors

∣uN ⟩ and ∣u0⟩ are identical. By contrast, while the two vectors ∣ūN ⟩ and

∣ū0⟩ describe the same physical state, they generally differ by a phase. In

fact, the phase mismatch between ∣ū0⟩ and ∣ūN ⟩ is nothing other than the

Berry phase! To see this, recall that Eq. (3.1) is gauge-invariant, so we

can evaluate it using the parallel-transport gauge for the states 0, ...,N − 1,

i.e., φ = −Im ln [⟨ū0∣ū1⟩...⟨ūN−1∣ū0⟩]. Since ∣ū0⟩ and ∣ūN ⟩ differ only by a

phase, we can replace ∣ū0⟩ at the end of the product by ∣ūN ⟩⟨ūN ∣ū0⟩] to get

φ = −Im ln [⟨ū0∣ū1⟩...⟨ūN−1∣ūN ⟩⟨ūN ∣ū0⟩]. Then all inner products are real

and positive except the last, so that

φ = −Im ln ⟨ūN ∣ū0⟩ . (3.8)

For the case of Eq. (3.2), for example, we get

∣ũa⟩ = (
1

1
) , ∣ũb⟩ = (

e−πi/3

eπi/3
) , ∣ũc⟩ = (

e−2πi/3

e2πi/3 ) , ∣ũd⟩ = (
−1

−1
) (3.9)

(where we have now dropped the irrelevant normalization prefactors), so

that φ = −Im ln ⟨ūd∣ū0⟩ = π as before.

Note that the parallel transport-gauge is not quite unique, since there is

still the freedom to choose the phase of the initial vector ∣ū0⟩. Since this

choice of initial phase also propagates into ∣ūN ⟩, however, it does not affect

the value of φ coming from Eq. (3.8).

4 The term “parallel transport” comes from differential geometry, where the basic idea is that
one chooses a local orthonormal basis of vectors at each point along a path on a curved
manifold in such a way that the basis is “as aligned as possible” with its neighbors
everywhere along the path. Here, the phrase “as aligned as possible” is to be reinterpreted in
terms of phase alignment.
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For a closed loop of the kind that we are considering here, the paral-

lel transport gauge is somewhat unsatisfying in that it has a discontinuity

where the end of the loop rejoins the starting point. We can smooth out

this discontinuity by constructing a “twisted parallel transport gauge” by

starting from the parallel transport gauge and applying phase twists

∣ũj⟩ = e
−ijφ/N

∣ūj⟩ . (3.10)

The new gauge no longer has the discontinuity at the end of the loop. It has

the property that Im ln ⟨ũj ∣ũj+1⟩ has the uniform value −φ/N at every point

on the loop, which is manifestly consistent with Eq. (3.6). In other words,

we have distributed the phase evolution uniformly along the loop in such a

way as to iron out the gauge discontinuity that would otherwise occur at

the end of the loop.

While the freedom in the choice of the twisted parallel-transport gauge is

still strongly restricted, it is less restricted than for a true parallel-transport

gauge for the following important reason. Now, in addition to rotating the

phase of the starting state ∣ũ0⟩ (which amounts to a global rotation of all

phases), we have the possibility of replacing φ by φ+ 2πm (for some integer

m) in Eq. (3.10). Takingm=1 for example, this changes all the Im ln ⟨ũj ∣ũj+1⟩

by −2π/N , which is still much less than 2π for large N . In other words, we

are free to choose different ways of unwinding the phase discontinuity such

that Im ln ⟨ũj ∣ũj+1⟩ is identical for each pair of neighbors, and each of these

is a different but equally valid twisted parallel transport gauge. We will

usually choose the one such that ∣Im ln ⟨ũj ∣ũj+1⟩∣ is minimum, but this is not

a fundamental restriction. The gauge choice of Eq. (3.2) is an example of a

twisted parallel-transport gauge.

3.1.2 Continuous formulation and Berry potential

Another hint that the Berry phase formula above may be physically mean-

ingful arises from the fact that it has a well-defined continuum limit, shown

in Fig. 3.3(c), obtained by increasing the density of points along the path

as sketched in Fig. 3.3(a-b). In the continuum formulation, we can take the

path to be parametrized by a real variable λ such that ∣uλ⟩ traverses the

path as λ evolves from 0 to 1, with ∣uλ=0⟩ ≡ ∣uλ=1⟩. (Such a convention should

be familiar from Ch. 1.) We assume here that ∣uλ⟩ is a smooth and differen-

tiable function of λ. To derive the continuum expression for the Berry phase
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Figure 3.3 (a) Evolution of a state vector ∣u⟩ in N discrete steps around a
closed loop, as in Fig. 3.1. (b) Approach to the continuum limit by increas-
ing the density of points around the loop. (c) Continuum limit, in which
the parameter runs over λ ∈ [0,1] with ∣uλ=0⟩ = ∣uλ=1⟩. (d) Loop regarded
as spanning a surface in a two-dimensional parameter space λ = (λµ, λν).

that corresponds to Eq. (3.6) we note that

ln ⟨uλ∣uλ+dλ⟩ = ln ⟨uλ∣ (∣uλ⟩ + dλ
d∣uλ⟩

dλ
+ . . .)

= ln(1 + dλ ⟨uλ∣∂λuλ⟩ + . . .)

= dλ ⟨uλ∣∂λuλ⟩ + . . .

where ∂λ is a shorthand for d/dλ and ‘. . .’ indicates terms of second order

and higher in dλ. The latter can be discarded in taking the continuum limit

of Eq. (3.6) and we obtain

φ = −Im ∮ ⟨uλ∣∂λuλ⟩dλ . (3.11)

In fact ⟨uλ∣∂λuλ⟩ is purely imaginary since

2Re ⟨uλ∣∂λuλ⟩ = ⟨uλ∣∂λuλ⟩ + ⟨∂λuλ∣uλ⟩ = ∂λ ⟨uλ∣uλ⟩ = 0 ,

so Eq. (3.11) can also be written as

φ = ∮ ⟨uλ∣i∂λuλ⟩dλ . (3.12)

This is the famous expression for a Berry phase in the continuous formulation

(Berry, 1984; Wilczek and Shapere, 1989).
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The integrand on the right-hand side of Eq. (3.12) is known as the Berry

connection or Berry potential,5

A(λ) = ⟨uλ∣i∂λuλ⟩ = −Im ⟨uλ∣∂λuλ⟩ , (3.13)

in terms of which the Berry phase is

φ = ∮ A(λ)dλ . (3.14)

Let us understand how these quantities vary under a gauge transforma-

tion, which now takes the form

∣ũλ⟩ = e
−iβ(λ)

∣uλ⟩ (3.15)

where β(λ) is some continuous real function of λ. We find

Ã(λ) = ⟨ũλ∣i∂λ∣ũλ⟩ = ⟨uλ∣e
iβ(λ) i∂λ e

−iβ(λ)
∣uλ⟩ = ⟨uλ∣i∂λ∣uλ⟩ + β

′
(λ)

where β′(λ) = dβ/dλ. Thus the Berry potential is not gauge-invariant ; it is

transformed under a gauge change according to

Ã(λ) = A(λ) + β′(λ) . (3.16)

But what about the Berry phase? Recall that since λ=0 and λ=1 label the

same state, we must insist that ∣ũλ=1⟩ = ∣ũλ=0⟩, just as was the case for ∣uλ⟩.

But this implies that

βλ=1 = βλ=0 + 2πm (3.17)

for some integer m. Then

∫

1

0
β′(λ)dλ = βλ=1 − βλ=0 = 2πm (3.18)

so that replacing A by Ã in Eq. (3.14) and using Eq. (3.16) yields

φ̃ = φ + 2πm. (3.19)

That is, the Berry phase φ is gauge-invariant modulo 2π, or in other words,

gauge-invariant when regarded as a phase angle!

Once again, we can think of the Berry phase as the phase that is “left over”

after parallel transport around the loop. In the continuous case, a parallel-

transport gauge is one in which the Berry connection A(λ) vanishes:

Ā(λ) = ⟨ūλ∣i∂λūλ⟩ = 0 . (3.20)

5 These terms are generally used interchangeably. “Connection” is a term taken from
differential geometry, while “potential” invokes an analogy with the vector potential of
electromagnetism (see p. 75) and other gauge field theories.
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Figure 3.4 (a) Open path A in parameter space. (b) Closed path A in
parameter space. (c) Pair of open paths A and B with common initial and
final points, such that A −B (that is, A followed by the reverse traversal
of B) is a closed path.

If we impose such a gauge, then the Berry phase is just the phase mismatch

at the end of the loop,

φ = −Im ln ⟨ūλ=1∣ūλ=0⟩ , (3.21)

exactly as in Eq. (3.8). We can also construct a twisted parallel transport

gauge as ∣ũλ⟩ = e
−iφλ ∣ūλ⟩, in analogy with Eq. (3.10), with the result that

Ãλ is constant around the loop.

The fact that the Berry phase is gauge-invariant modulo 2π should not

come as a surprise, reflecting as it does our experience with the discrete

case, but its importance is profound. Because quantum probabilities are

proportional to the norm squared of an amplitude, there is a tendency to

think that “the phase doesn’t matter.” On the contrary, however, phases can

lead to interference phenomena that are physically important. For example,

if duplicate copies of a system are prepared, subjected to parallel transport

along different paths in parameter space, and then recombined, the resulting

phase difference can lead to physical and measurable interference effects.

We shall usually discuss Berry phases in the context of adiabatic evolution

along closed paths, but it is useful to establish some terminology for open

paths as well. For an open path such as that shown in Figure 3.4(a), we can

define an open-path Berry phase

φ = ∫
f

i
A(λ)dλ . (3.22)

However, this kind of Berry phase is not gauge-invariant; a gauge transfor-

mation in the form of Eq. (3.15) changes φ by βf −βi. Only when the path is

closed, as in Fig. 3.4(b), is the Berry phase gauge-invariant (modulo 2π). But

Fig. 3.4(c) shows another interesting case: if a system is carried from λi to λf

along two different paths A and B, the relative phase ∆φ = φB −φA is again
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Figure 3.5 Possible behaviors of the function β(λ) defining a gauge trans-
formation through Eq. (3.15). (a-b) Conventional plots of “progressive” (a)
and “radical” (b) gauge transformations, for which β returns to itself or
is shifted by a multiple of 2π at the end of the loop, respectively. Shaded
lines show 2π-shifted periodic images. (c-d) Same as (a-b) but plotted on
the surface of a cylinder to emphasize the nontrivial winding of the radical
gauge transformation in (b) and (d).

gauge-invariant. This follows trivially from the fact that ∆φ is the Berry

phase obtained by traversing path B, then path A in the reverse direction;

this is equivalent to circulating around a closed path as in Fig. 3.4(b).

Returning now to closed paths, note that all possible gauge transforma-

tions given by Eq. (3.15) can be classified topologically according to the

integer m appearing in Eq. (3.17), which is a “winding number” specifying

how many times e−iβ circulates around the unit circle in the complex plane

as λ circulates around the loop. We shall refer to gauge changes character-

ized by m=0, illustrated in Fig. 3.5(a), as “progressive” gauge transforma-

tions. These have the special property that the gauge function β(λ) can be

smoothly deformed to the identity transformation (β=0 independent of λ).

By contrast, we reserve the term “radical” for gauge changes with a nontriv-

ial winding, as shown in Fig. 3.5(b) and (d).6 (These are sometimes referred

to as “small” and “large” gauge transformations respectively.)

6 Note that the concept of a Berry phase does not impose any topological classification on
adiabatic loops; the Berry phase itself is not quantized, and in the absence of special
symmetries, its value can typically be adjusted by modifying the path of the loop or the
Hamiltonian that determines the states along the loop. Instead, it is the set of gauge
transformations on the loop that admits a topological classification.
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(a) (b) 

Figure 3.6 (a) Evolution of an applied magnetic field around a closed loop
in B space. (b) Shaded region shows the solid angle swept out on the unit
sphere in B space.

3.1.3 An example

So far, the discussion above has been entirely mathematical; we have been

treating ∣uλ⟩ as a parametrized path in some complex vector space. For

physical applications, we will usually be concerned with the case in which

∣uλ⟩ is the ground state of some quantum-mechanical Hamiltonian Hλ, with

the ground state evolving smoothly as a consequence of the smooth evolution

of H. For example, we might be concerned with the electronic ground state of

a molecule as certain atomic structural coordinates are varied, or as external

electric or magnetic fields are applied.

A simple and instructive example is the case of a spin-1/2 particle, such

as an electron or a neutron, at rest in free space and subjected to a uniform

magnetic field B = Bn̂ directed along n̂. Its Hamiltonian is just

H = −γB ⋅ S = −(
γh̵B

2
) n̂ ⋅σ (3.23)

where γ is the gyromagnetic moment, S = h̵σ/2 is the spin, and σj are the

Pauli matrices. The ground state ∣uB⟩ is a spin eigenstate of n̂ ⋅ σ, and is

therefore completely independent of the magnitude of B. Thus it is natural

to write it as ∣un̂⟩, emphasizing that it depends only on the field direction

n̂. We can then ask: What is the Berry phase of ∣un̂⟩ as n̂ is carried around

a loop in magnetic-field orientation space, as illustrated in Fig. 3.6(a)?

We shall see shortly that there is an elegant answer to this question, even

for a curved loop such as that shown in Fig. 3.6(a), but let us first consider

a simpler “triangular” loop in the discretized approximation. We let n̂ start

along ẑ, then rotate it to x̂, then to ŷ, and then back to ẑ, thereby tracing

out one octant of the unit sphere. From Eq. (3.1), the Berry phase is

φ = −Im ln [ ⟨↑z ∣↑x⟩ ⟨↑x ∣↑y⟩ ⟨↑y ∣↑z⟩ ]

where ∣ ↑n⟩ is the spinor that is “spin up in direction n̂.” As shown in
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standard quantum mechanics texts, such a spinor can be represented as

∣↑n̂⟩ = (
cos(θ/2)

sin(θ/2)eiϕ) , (3.24)

where (θ,ϕ) are the polar and azimuthal angles of n̂. Thus ∣ ↑x⟩ =
1√
2
(

1
1),

∣ ↑y⟩ =
1√
2
(

1
i), and ∣ ↑z⟩ = (

1
0). We can ignore the normalization factors when

inserting into the expression for φ, obtaining φ = −Im ln [(1)(1 + i)(1)] =

−π/4. As it happens, this result is exact; a more careful treatment using

a dense mesh of intermediate points along each great-circle arc does not

change this result. This will become clear when we obtain the general so-

lution to the magnetic-field loop problem after introducing the concept of

Berry curvature, which we do next.

Exercises

Exercise 3.1.1 Consider a path through the four spinor states

∣u0⟩ = (
1

0
) , ∣u1⟩ =

1√
2
(

1

1
) , ∣u2⟩ = (

0

1
) , ∣u3⟩ =

1√
2
(

1

i
) (3.25)

which closes on itself with ∣u4⟩ = ∣u0⟩. This corresponds to a path in

which the spin points along ẑ, x̂, −ẑ, ŷ, and then back to ẑ. (a) Compute

the discrete Berry phase for the path around this loop.

(b) Construct a parallel transport gauge for this path and check that

the Berry phase computed from Eq. (3.8) agrees with your previous

result..

(c) Construct a twisted parallel-transport gauge for this path.

Exercise 3.1.2 Consider the sequence of N spinor states described by

Eq. (3.24) all with the same θ and with ϕ taking N equally spaced

values from 0 to 2π.

(a) Show that the Berry phase is

φ = −N tan−1
[

sin2(θ/2) sin(2π/N)

cos2(θ/2) + sin2(θ/2) cos(2π/N)
] . (3.26)

(b) Find φ(θ) in the limit that the discrete path becomes continuous

(i.e., as N →∞).

(c) For θ = 45○ compute φ numerically for N = 3, 4, 6, 12, and 100, and

compare with the continuum limit.

Exercise 3.1.3
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3.2 Berry curvature and the Chern theorem

3.2.1 Berry curvature

Consider a two-dimensional parameter space such as that illustrated in

Fig. 3.3(d), so that we have vectors ∣uλ⟩ as a function of λ = (λx, λy). Then

the definition of the Berry potential in Eq. (3.13) naturally generalizes to

that of a 2D vector A(λ) = (Ax,Ay) via

Aµ = ⟨uλ∣i∂µuλ⟩ (3.27)

where ∂µ = ∂/∂λµ, and the Berry phase expression of Eq. (3.14) can be

written as a line integral around the loop, i.e.,

φ = ∮ A ⋅ dλ . (3.28)

Then the Berry curvature Ω(λ) is simply defined as the Berry phase per

unit area in (λx, λy) space. In a discretized context, as with the λ mesh

shown in Fig. 3.3(d), Ω is identified with the Berry phase around one small

plaquette7 divided by the area of that plaquette. In a continuum framework,

it becomes just the curl of the Berry potential,

Ω(λ) = ∂xAy − ∂yAx = −2Im ⟨∂xu∣∂yu⟩ . (3.29)

where the last equality follows from a cancellation of terms of the form

⟨u∣∂x∂yu⟩ and noting that ⟨∂yu∣∂xu⟩
∗ = ⟨∂xu∣∂yu⟩.

Once Ω is defined as a curl, we can immediately write Stokes’ theorem in

the form

φ = ∮
C

A ⋅ dλ = ∫
S

Ω(λ)dS (3.30)

where curve C traces the boundary of region S in the positive sense of

circulation. In the discrete case, Stokes’ theorem is just the statement that

if we were to sum up the circulation of the Berry potential A around all

the little plaquettes making up the region shown in Fig. 3.3(d), we would

just obtain the Berry phase computed around its boundary, as is self-evident

from the fact that the circulation computed along any one link is traversed

once in each direction, leading to a cancellation.

A crucially important property of the Berry curvature is its gauge-invariance.

That is, under a 2D gauge change ∣ũλ⟩ = e
−iβ(λ)∣uλ⟩, Eq. (3.16) is generalized

to Ã = A+∇β, and since the curl of a gradient is zero, the Berry curvature

Ω in Eq. (3.29) is unchanged by the gauge transformation.

These concepts are easily generalized to a higher-dimensional parameter

7 Because the plaquette is small, the magnitude of the Berry phase around the plaquette can
safely be assumed to be << 2π, so there is no ambiguity in its branch choice.
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space λ = (λ1, ..., λn) by defining Aµ as an n-component vector following

Eq. (3.27) and Ωµν to be a (real) antisymmetric second-rank tensor

Ωµν = ∂µAν − ∂νAµ = −2 Im ⟨∂µu∣∂νu⟩ . (3.31)

Then Stokes’ theorem becomes

φ = ∮
C

A ⋅ dλ = ∫
S

Ωµν dsµ ∧ dsν (3.32)

where dsµ ∧ dsν is an area element on the surface S. This framework be-

comes most familiar for a 3D parameter space, where it is natural to use the

pseudovector notation Ωz ≡ Ωxy = −2Im ⟨∂xu∣∂yu⟩ etc., which is sometimes

written as Ω = −Im ⟨∇ku∣ × ∣∇ku⟩.
8 In this pseudovector notation, Stokes’

theorem takes the familiar form

φ = ∮
C

A ⋅ dλ = ∫
S

Ω ⋅ n̂dS = ∫
S

Ω ⋅ dS (3.33)

where n̂ is a unit vector normal to the surface element of area dS.

There is a close analogy connecting the real-space electromagnetic vector

potential A(r) and its curl, the magnetic field B(r), with the parameter-

space Berry potential A(λ) and its curl Ω(λ). In both cases, the “potential”

A is gauge-dependent, while the “field” B or Ω is not. We shall have further

opportunities to pursue this analogy later.

Let’s apply this concept to the case of the spinor subjected to a mag-

netic field along n̂ as discussed earlier. We begin by calculating the Berry

curvature Ωxy at the “north pole” of the unit sphere in Fig. 3.6, i.e., at

n̂ = (nx, ny,
√

1 − n2
x − n

2
y). We again use the representation of Eq. (3.24),

which we repeat here for convenience:

∣↑n̂⟩ = (
cos(θ/2)

sin(θ/2)eiϕ) . (3.34)

A gauge choice is implicit in this representation, which conveniently makes

∣ ↑n̂⟩ smooth and continuous in the vicinity of θ=0. However, this comes at

the expense of introducing a singularity at θ = π, where the phase of ∣ ↑−ẑ⟩
depends on the azimuthal direction ϕ along which the limit θ → π is taken.9

Since the Berry-curvature formula of Eq. (3.31) only involves first derivatives

of ∣↑n̂⟩, we can expand to first order to get

∣↑n̂⟩ ≃ (
1

(nx + iny)/2) , ∣∂x ↑n̂⟩ =
1
2(

0
1) , ∣∂y ↑n̂⟩ =

1
2(

0
i) , (3.35)

so that Eq. (3.31) evaluates to Ωxy = −1/2.

8 Note that this implies Ωµν = εµνσΩσ but Ωµ = 1
2
εµνσΩνσ , where εµνσ is the antisymmetric

tensor.
9 An alternative would be to multiply the right side of Eq. (3.24) by e−iϕ, but this would leave

a singularity at θ = 0 where we want to compute the Berry curvature.
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Using the pseudovector notation we can rewrite this as Ωn̂, which can be

interpret as the Berry curvature per unit solid angle in n̂ orientation space.

Having found that Ωn̂ = −1/2 at θ = 0, however, we can argue that it must

take the same value everywhere else on the unit sphere. After all, the physics

of a spinor in free space is intrinsically isotropic, and we are free to evaluate

Ωn̂ using a coordinate system (x′, y′, z′) with z′ aligned with n̂. From this

we conclude that Ωn̂ = −1/2 everywhere on the unit sphere.

We can easily check the consistency of this result with the Berry phase

that we computed on p. 72 for a path tracing one octant of the unit sphere.

From Stokes’ theorem, Eq. (3.30), we would expect that φ should be just

−1/2 times the solid angle 4π/8, or φ = −π/4, which is precisely what we

found above.

We now have the general answer to the problem posed in relation to

Fig. 3.6. The Berry phase that results from the adiabatic evolution of a spinor

around the loop in magnetic-field orientation space shown in Fig. 3.6(a) is

simply −1/2 times the solid angle subtended by the loop, as sketched in

Fig. 3.6(b). This is a beautiful and simple result of the mathematical physics

of spinors. As a special case, the Berry phase obtained by rotating a spinor

around a full great circle, as from ẑ to x̂ to −ẑ to x̂ and back to ẑ is just −π,

since the solid angle of a hemisphere is 2π. This gives eiφ = −1, reflecting

the well-known fact that the parallel transport of a spinor through a full 2π

rotation results in a flip of the sign of the spinor wavefunction.

3.2.2 Chern theorem

You might be puzzled to note that the integral of the Berry curvature over

the entire unit sphere does not vanish: it is −2π. At first sight this may

seem impossible. For, imagine discretizing the surface of the unit sphere into

small triangles or other polygonal plaquettes, and calculating the circulation

of the Berry potential A (i.e., the Berry phase φ) around each plaquette.

Shouldn’t the sum of these vanish? One might think so, reasoning that each

link between a pair of vertices is traversed once in each direction, leading to

a cancellation. But we know that the integrated Berry curvature, which we

identify with the total circulation of A, should be −2π. Where have we gone

wrong?

Let’s look more closely, using a dodecahedral discretization of the sphere

as shown in Fig. 3.7. The circulation of A on path C in panel (a), i.e., around

a single pentagon, is 1/12 of −2π or −π/6. Similarly, the total circulation

around path C comprising six pentagons in panel (b) is −π, and in (c) it

is −11π/6. On the other hand, path C in panel (c) traces the outline of
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(a) (b) (c)

Figure 3.7 Application of Stokes’ theorem to portions of the unit sphere
in B space in a discretized approximation. The Berry phase, or circulation
of A, around loop C must be equal to the sum of circulations of all the
enclosed pentagons (shaded), for (a) the top pentagon only; (b) the top six
pentagons; and (c) all but the bottom pentagon.

the bottom outward-directed pentagon backwards, so the circulation on this

path should have been +π/6, not −11π/6. Is this a contradiction? No, for

we are saved by the fact that a Berry phase is only well-defined modulo 2π,

according to which −11π/6 and +π/6 are identical!

You can easily see that this argument generalizes: for any closed surface

that is discretized into plaquettes, the total circulation must be 2π times

an integer. In the continuum limit this becomes the famous Chern theorem,

which states that the integral of the Berry curvature over any closed 2D

manifold is quantized to be 2π times an integer.

Before deriving this theorem, it may first help to go back and clarify a

potentially puzzling aspect of gauge invariance in the context of Stokes’ the-

orem, Eq. (3.33). The right-hand side of this equation represents the Berry-

curvature flux passing through surface patch S (i.e., the area integral of the

surface-normal component of Ω over S); since Ω is fully gauge-invariant,

the right-hand side is fully determined without any ambiguity. In contrast,

the left-hand side is the Berry phase of the curve C that bounds S, and we

know that a Berry phase is only well-defined modulo 2π. So which is it? Is

there a 2π ambiguity, or not?

The answer is that if φ is to be determined using a knowledge of ∣uλ⟩ only

on curve C, then it is really only well-defined modulo 2π. In this case, we

can rewrite Eq. (3.33) as

∫
S

Ω ⋅ dS ∶= ∮
C

A ⋅ dλ (3.36)

using a specialized notation that was introduced in Eq. (1.6). Recall that ‘∶=’

means that the unambiguously defined object on the left-hand side is equal

to one of the values of the object on the right-hand side, which is ambiguous

modulo a quantum. The meaning of Eq. (3.36), then, is that it is possible
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Region B Region A 

C 

Figure 3.8 Proof of the Chern theorem for a manifold S having the topology
of a sphere. Closed path C traces the boundaries of subregions A and B in
the forward and reverse directions respectively. The uniqueness modulo 2π
of the Berry phase around loop C is the key to the proof.

to make a choice of gauge for the phases of ∣uλ⟩ around the loop C in such

a way that this equation becomes an equality, while other choices will leave

a mismatch of some integer multiple of 2π.

What kind of gauge gives the “correct” answer? Well, if we choose a gauge

that is smooth and continuous everywhere in S, including on its boundary

C, and use this gauge to evaluate the loop Berry phase, then Eq. (3.36)

becomes an equality. For in this case, the logic leading to the derivation of

Stokes’ theorem – summing up circulations around small plaquettes to get

the boundary circulation – is sound. While it is possible to make a radical

gauge transformation that shifts φC by 2π when regarding ∣uλ⟩ as a function

defined on C only, such a gauge change cannot be smoothly continued into

the interior S without creating a vortex-like singularity.

Now we are ready to prove the Chern theorem, which states that the

integral of the Berry curvature over any closed 2D manifold is

∮ Ω ⋅ dS = 2πm (3.37)

for some integer m. This integer is known as the “Chern number” or “Chern

index” of the surface, and can be regarded as a “topological index” or “topo-

logical invariant” attached to the manifold of states ∣uλ⟩ defined over the

surface S.10

We prove this first for a surface having the topology of a simple sphere,

as in Fig. 3.8, and divide the sphere into two regions A and B. The loop C

forming the boundary between them traverses A in the forward direction and

B in the reverse direction, so that applying Stokes’ theorem to each of them,

10 Another famous topological invariant is the Euler number χ, which is the integral of the
Gaussian curvature over the surface S, and is related to the genus g via χ = 2 − 2g. By
contrast, the Chern index is not a characteristic of the surface itself, but of the manifold of
states ∣uλ⟩ defined over the surface.
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we obtain ∫A Ω⋅dS ∶= φ and −∫B Ω⋅dS ∶= φ where φ is the Berry phase around

C. That is, the results of the two applications of Stokes’ theorem must be

consistent, but they only need to be consistent modulo 2π. Subtracting these

two equations we get

∫
A

Ω ⋅ dS + ∫
B

Ω ⋅ dS = ∮ Ω ⋅ dS ∶= 0 (3.38)

which is equivalent to Eq. (3.37).

The same strategy applies to any orientable closed 2D surface, such as a

torus. The general strategy is to decompose the surface S into an “atlas”

composed of a series of “maps” (A and B above), such that a smooth and

continuous gauge can be defined in each map. Then Stokes’ theorem is ap-

plied to each map, and the results are summed. One side of the resulting

equation is ∮ Ω ⋅dS integrated over the entire surface S, while on the other

is the sum of Berry phases along the boundaries, which must cancel modulo

2π. A more careful demonstration of the Chern theorem can be found in a

number of topological physics texts such as those by Frankel (1997), Naka-

hara (2003), or Eschrig (2011), where a language of “fiber bundles” and ???

is typically introduced.

Looking back, we see that our result ∮ Ω ⋅ dS = −2π over the magnetic

unit sphere in Sec. 3.2.1 is consistent with the Chern theorem with m = −1.

In fact, if we had studied a spin-s particle with s = 1 or s = 3/2 instead of

s = 1/2, we would have found Ω = −s and m = −2s. Since the latter has to

be an integer, it follows that the only allowed spin representations are those

with half-integral or integral s, a well-known fact which is usually derived

in other ways in elementary quantum texts.

Note that when the Chern index is non-zero, it is impossible to construct

a smooth and continuous gauge over the entire surface S. For, if there were

such a gauge, then we could apply Stokes’ theorem directly to the entire

surface and conclude that the Chern number vanishes, in contradiction with

the assumption. This is again well illustrated by the case of the spinor on

the magnetic unit sphere. If we start from n̂=+ẑ and construct a gauge that

is smooth in the vicinity of θ=0, and then extend this gauge as smoothly as

possible with increasing θ, we get a gauge like that of Eq. (3.24). But while

it is smooth in the “northern hemisphere,” this gauge has a singularity

(“vortex”) at θ=π, i.e., at the “south pole.” This should remind you of the

situation illustrated in Fig. 3.7, where a circulation of order 2π was left at

the south pole at the end of the construction. If instead we start at n̂=−ẑ

and work continuously towards the north pole, we can construct an equally
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valid gauge described by

∣↑n̂⟩ = (
cos(θ/2)e−iϕ

sin(θ/2) ) . (3.39)

But this gauge, while perfectly well-behaved in the southern hemisphere, has

a vortex at the north pole. Indeed, there is no possible choice of gauge that

is smooth and continuous everywhere on the unit sphere. In such a case,

we say that the presence of a non-zero Chern index presents a “topological

obstruction” to the construction of a globally smooth gauge.

Exercises

Exercise 3.2.1 Question...

3.3 Adiabatic dynamics

So far, we have been discussing the Berry phase as a property of the slow

adiabatic evolution of a quantum system along a certain path in parameter

space. It remains, however, to show how this relates to the actual quantum

evolution of the system as described by the time-dependent Schrödinger

equation.

Consider a HamiltonianH(λ) for some quantum system such as a molecule,

with parameter λ(t) being a slow function of t. (We shall quantify what is

meant by “slow” shortly.) For a given λ the eigenstates of H are

H(λ) ∣n(λ)⟩ = En(λ) ∣n(λ)⟩ (3.40)

where n = 1, ... labels the eigenstates. We start the system in eigenstate n at

time t=0 and then follow its subsequent time evolution.

If λ did not vary with t at all, the resulting wavefunction would evolve

as ∣ψ(t)⟩ = e−iEnt/h̵∣n⟩. In other words, the phase advances by an amount

e−iEn∆t/h̵ in an infinitesimal time interval ∆t. Over a finite time the phase

evolution is therefore

∏ e−iEn∆t/h̵
= e−i∑En∆t/h̵ .

In the continuum limit the sum turns into an integral, so we expect the

phase evolution to be of the form ∣ψ(t)⟩ = eiγ(t)∣n(t)⟩ with

γ(t) = −
1

h̵
∫

t

0
En(t

′
)dt′ . (3.41)

This leads to the ansatz

∣ψ(t)⟩ = c(t) eiγ(t) ∣n(t)⟩ (3.42)
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where ∣n(t)⟩ on the right-hand side is defined as ∣n(λ(t))⟩, i.e., it is just the

eigenstate ∣n(λ)⟩ of the time-independent problem evaluated at λ = λ(t). The

factor c(t) allows for the possibility that there may be some extra evolution

beyond the guess based on γ(t).

We shall see shortly that the ansatz (3.42) is only the zero-order term in

a perturbation expansion in λ̇ = dλ/dt, but for now we plug this ansatz into

the time-dependent Schrödinger equation

[ih̵∂t −H(t)] ∣ψ(t)⟩ = 0 (3.43)

(where ∂t = ∂/∂t) to find

0 = ċ(t) ∣n(t)⟩ + c(t)∂t∣n(t)⟩ . (3.44)

To derive this equation, note that the time derivative ∂t acts on all three

terms in Eq. (3.42), but the term involving ∂te
iγ(t) cancels against the

H(t)∣n(t)⟩ = En(t)∣n(t)⟩ term, leaving the two terms above. Acting with

⟨n(t)∣ on the left on both sides yields

ċ(t) = ic(t)An(t) (3.45)

where

An(t) = ⟨n(t)∣i∂tn(t)⟩ . (3.46)

Comparing with Eq. (3.13) we note that An(t) is a “Berry connection in

time.” The solution of Eq. (3.45) is just c(t) = eiφ(t) with

φ(t) = ∫
t

0
An(t

′
)dt′ (3.47)

which we immediately recognize as a Berry phase.

Moreover, this Berry phase can be reexpressed in terms of λ. That is, since

∣n(t)⟩ is defined as ∣n(λ(t))⟩, application of the chain rule yields ∂t∣n(t)⟩ =

λ̇ ∂λ∣n(λ)⟩. It follows that An(t) = λ̇An(λ) where An(λ) ≡ ⟨n(λ)∣i∂λn(λ)⟩

is the Berry potential in parameter space. Substituting into Eq. (3.47) and

using dλ = λ̇dt we then find

φ(t) = ∫
λ(t)

λ(0)
An(λ)dλ . (3.48)

This is a remarkable result; it says that the Berry phase entering into the

time-evolving wavefunction is only a function of the path it has traced in pa-

rameter space, and is independent of the rate at which the path is traversed,

so long as the parametric evolution is sufficiently slow.

Let’s take stock. Our ansatz of Eq. (3.42) is successful only if the extra
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Berry-phase term is included. The result is that, at leading order in adiabatic

perturbation theory, the wavefunction evolves as

∣ψ(t)⟩ = eiφ(λ(t)) eiγ(t) ∣n(t)⟩ (3.49)

where the naively expected dynamical phase eiγ has to be augmented by the

Berry phase eiφ to find the correct phase evolution of the wavefunction.

As a special case, note that if we have chosen a parallel-transport gauge

for ∣n(λ)⟩, i.e., satisfying Eq. (3.20), the Berry-phase term is absent in

Eq. (3.49). In other words, our derivation shows that, once the dynami-

cal phase is factored out, the time evolution of the system is such that it

follows a parallel-transport gauge.

There may be a tendency to think of the Berry-phase factor in Eq. (3.49)

as “only a phase” with little in the way of physical consequences, since

probabilities, not amplitudes, determine physical observations. However, as

mentioned on p. 70, the Berry phase sometimes plays a crucial role by giving

rise to interference phenomena. For example, if duplicate copies of a system

are prepared and propagated along two paths on which they experience

different Berry phases, this difference manifests itself when the systems are

recombined. A simple example is discussed in Ex. 3.3.1.

We hinted earlier that higher-order terms might need to be added to

Eq. (3.42) or (3.49) for some purposes. One situation where this is abso-

lutely crucial is the discussion of adiabatic charge transport. This will play

an important role for crystalline systems in Ch. 4, but for simplicity we con-

sider it here only for a finite system such as an atom or molecule. Recall that

the current density for an electron in state ∣ψ⟩ is (ieh̵/2m)[ψ∗(r)∇ψ(r) −
ψ(r)∇ψ∗(r)], which vanishes identically if ψ(r) is real. This will also be true

of the wavefunction in Eq. (3.49) if ∣n(λ)⟩ is real, since the phase factors in

front are independent of r. But in a typical case, such as for the ground elec-

tronic state of an H2O molecule as one nucleus is gradually moved, ∣n(λ)⟩

is indeed real. If we assumed (3.49), then, we would conclude that the mo-

tion of the nucleus induces no corresponding flow of electron charge. This is

clearly nonsense, since the electronic charge density ρ(r) changes with time,

which it cannot do if there is no current flow.

The solution to this paradox is to carry the adiabatic perturbation theory

to one higher power of λ̇. We now expand Eq. (3.49) to become

∣ψ(t)⟩ = eiφ(λ(t)) eiγ(t) [ ∣n(λ(t))⟩ + λ̇ ∣δn(t)⟩ ] , (3.50)

where the extra component ∣δn(t)⟩ is to be determined. We already know

that Eq. (3.50) solves the time-dependent Schrödinger equation to order zero
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in λ̇, but we now require that it should also do so at first order. For this

purpose we can discard terms that go like λ̈ or λ̇2, including a λ̇∂t∣δn⟩ term,

and we find

(En −Hλ) ∣δn⟩ = −ih̵ (∂λ + iAn) ∣n⟩ . (3.51)

This is very similar to the inhomogeneous linear equation (2.75) for the per-

turbed wavefunction that arises in ordinary first-order perturbation theory,

and has the formal solution

∣δn⟩ = −ih̵ ∑
m≠n

⟨m∣∂λn⟩

En −Em
∣m⟩ (3.52)

involving a sum over other eigenstates ∣m(λ)⟩ at the same λ.11 obtained in

Using the notation of Sec. 2.3, this is just

∣δn⟩ = −ih̵Tn∣∂λn⟩ . (3.53)

Note that time has again disappeared, and we can think in terms of evolution

with respect to λ, except for the magnitude of λ̇ appearing in Eq. (3.50).

We said that the adiabatic approximation should be valid if the Hamilto-

nian varies “slowly enough,” and we are now in a position to quantify this.

Namely, it should apply so long as λ̇ ∣δn⟩ is small compared to ∣n⟩. For an

order-of-magnitude estimate we can replace i⟨m∣∂λn⟩ by An and En−Em by

a characteristic energy separation ∆E to find that the small dimensionless

parameter describing the “slowness” of adiabatic evolution is h̵Anλ̇/∆E.

An interesting feature of adiabatic perturbation theory is the fact that,

leaving aside the phase information encoded in the Berry phase, the time-

evolving wavefunction has only a short-term memory of the history of the

path. Keeping terms to first order in λ̇, for example, the state at time t

depends only onHλ(t′) for times t′ at, and infinitesimally prior to, the current

time t. This memory gets pushed back a little further as higher-order terms

are included, but the overall picture is that the state vector rapidly “forgets”

what happened earlier in its evolution along the path.

If we now use Eq. (3.50) when taking the expectation value of the current

operator at order λ̇, we can check that it does correctly describe the charge

transport during the adiabatic evolution. This is carried through in Ex. 3.3.2.

Finally, we note that a common context for the application of adiabatic

evolution is that of a system with “fast” and “slow” variables. The canonical

example is that of electrons in molecules and solids, where the electron is

many orders of magnitude lighter than then nuclei. From the viewpoint of

11 A similar expression, but derived for the one-particle density matrix instead of the
wavefunction, appears as Eq. (2.10) of Thouless (1983).



84 Berry phases and curvatures

the time-evolving electron system, it is often an excellent approximation to

treat the nuclear coordinates as classical variables that evolve slowly along

a prescribed path. However, there is also a back-reaction on the system of

nuclei, so that in a quantum treatment they experience a “gauge field” and a

“gauge potential” arising from the electron system as it adiabatically follows

the nuclear one. This is an important part of the theory of Berry phases as

applied to molecular physics, and is outlined briefly in App. D.

Exercises

Exercise 3.3.1

Exercise

Exercise 3.3.2 Here we compute the current induced by an adiabatic

change of the Hamiltonian and check that it correctly predicts the

change in the electric dipole moment.

(a) Using Eq. (3.50), simplified to ∣ψ(t)⟩ = eiα(∣n⟩ + λ̇ ∣δn⟩), show that

the induced change in some arbitrary operatorO is ⟨O⟩ = 2λ̇Re ⟨n∣O∣δn⟩.

(b) Defining the current operator J =−ev in terms of the velocity op-

erator v and using Eq. (3.52), show that

⟨J ⟩ = −2eh̵λ̇ Im ∑
m≠n

⟨n∣v∣m⟩⟨m∣∂λn⟩

En −Em
.

(c) Using Eq. (2.42), show that this becomes ⟨J ⟩ = −2eλ̇Re ⟨n∣r∣∂λn⟩.

Hint: Note that ⟨n∣r∣n⟩⟨n∣∂λn⟩ is pure imaginary (why?).

(d) Noting that ⟨J ⟩ has the interpretation of dd/dt, where d=−er is the

dipole operator, and cancelling the dt, show that this becomes ∂λ⟨d⟩ =

−2eRe ⟨n∣r∣∂λn⟩ = −e∂λ⟨n∣r∣n⟩, which is self-evident. This shows that

the calculation of the adiabatically induced current does correctly pre-

dict the change in electric dipole of the system.

3.4 Berryology of the Brillouin zone

Up until now in this chapter, we have considered Berry phases, connec-

tions and curvatures defined for some ∣uλ⟩ in a generic parameter space

λ = (λ1, λ2, ...). We now turn to the main theme of this book, where we

specialize to the case that these parameters are the wavevector components

kj labeling Bloch states ∣ψnk⟩ of band n in the BZ, as described in Sec. 2.1.3.

We assume for the moment that band n is isolated, i.e., that it does not

touch bands n ± 1 anywhere in the BZ. This is a significant restriction, as
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degeneracies between bands at high-symmetry points in the BZ are common

in crystalline materials. When they occur, they typically introduce a non-

analytic dependence of ∣ψnk⟩ on k, which is problematic for the definitions of

the Berry connection and curvature. We will lift this restriction in Sec. 3.6,

but for now it allows us to assume that such singularities are not present,

and the Berry formalism should apply.

However, we immediately encounter an important subtlety. Should we

define the Berry phase and curvature in terms of the Bloch functions ∣ψnk⟩,

or their cell-periodic versions ∣unk⟩? The answer is that we must use the

latter. To see this, consider the case of a discretized Berry phase for a 1D

crystal. If we were to substitute the ∣uj⟩ of Eq. (3.1) by the ∣ψnk⟩, we would

need to compute inner products ⟨ψnk∣ψn,k+b⟩ which take a form like

∫

∞

−∞
ψ∗nk(x)ψn,k+b(x)dx = ∫

∞

−∞
eibx u∗nk(x)un,k+b(x)dx (3.54)

for some small but finite k-space separation b. However, the product of u

factors on the right-hand side above is periodic with the unit cell, so that

the phase factor eibx will average to zero when the integral is carried over

all x. Thus, this inner product is ill-defined. Instead, the expression

⟨unk∣un,k+b⟩ = ∫
cell

u∗nk(x)un,k+b(x)dx (3.55)

is perfectly well-behaved. (We adopt a a single-unit-cell normalization con-

vention, i.e., ∫cell ∣unk(x)∣
2 = 1.)

The essential observation is that all of the ∣unk⟩ at different k have the

same boundary conditions, and thus belong to the same Hilbert space. As a

result, inner products between vectors at different k, or derivatives with re-

spect to k, are well defined. This would not be the case if the formalism were

based on the ∣ψnk⟩ vectors. Note, however, that the k dependence reappears

in a different guise, in that the ∣unk⟩ are now solutions of a k-dependent

Hamiltonian Hk as given by Eq. (2.39).

It is now straightforward to take the formalism of Sec. 3.1 over to the case

of Bloch functions in the BZ. Returning to 3D, a Berry phase associated

with band n takes the form

φn = ∮ An(k) ⋅ dk (3.56)

where the Berry connection is

Anµ(k) = ⟨unk∣i∂µunk⟩ (3.57)

with ∂µ = ∂/∂kµ, or equivalently, An(k) = ⟨unk∣i∇kunk⟩. Similarly, the Berry
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curvature is

Ωn,µν(k) = ∂µAnν(k) − ∂νAnµ(k) = −2 Im ⟨∂µunk∣∂νunk⟩ , (3.58)

which in 3D can be reexpressed in pseudovector form as Ωn(k). And as

before, we have a gauge freedom to transform the Bloch functions as

∣ũnk⟩ = e
−iβ(k)

∣unk⟩ (3.59)

where β(k) is some real function of k. The Berry connection

Ãn(k) = An(k) + ∇kβ(k) (3.60)

is gauge-dependent; the curvature Ωn,µν(k) is fully gauge-invariant; and the

Berry phase of Eq. (3.56) is invariant modulo 2π.

It is, of course, equally straightforward to develop the theory in terms of

the reduced wavevector κ of Eqs. (2.26-2.27). In this case, the derivatives

entering the formalism are redefined as ∂µ = ∂/∂κµ.

In the discretized version of this theory, which will be used in any practical

calculation, we have to take inner products of the form ⟨unk∣un,k+b⟩ between

neighboring points k and k+b in the BZ. This is quite unlike what we usually

encounter when computing the expectation values of observables, Eq. (2.41),

where the same wavevector k appears in both the bra and the ket. If the

Berry phase and curvature are to have any physical significance, it will have

to be in the context of a paradigm rather different from that of ordinary

observables and their expectation values.

You may be wondering whether the Berry phases, connections, and curva-

tures defined above are actually nonzero in crystals of interest. This question

requires better framing for the case of the Berry phase, where it depends

on choice of path, and for the Berry potential, which depends on the gauge

choice. But the Berry curvature Ωn(k) for band n is a uniquely defined

function in the BZ. It is fairly straightforward to show that:

1. If the crystal has inversion (I) symmetry, then Ωn(k) = Ωn(−k).

2. If the crystal has time-reversal (TR) symmetry, then Ωn(k) = −Ωn(−k).

Quantities involving an integral of Ωn over the BZ will vanish.

3. If the crystal has both I and TR symmetry,12 then Ωn(k) = 0 identically.

4. If the crystal has some other spatial or magnetic symmetries, as described

by the magnetic point group, then there are additional relations imposed

on Ωn(k). For example, a simple 3-fold axis imposes the corresponding

3-fold rotational symmetry on the Ωn(k) field.

12 Actually, it is enough if the crystal has I∗TR symmetry
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It is easy to remember these rules if you note that they are the same as

those governing the magnetic field B(r) of a molecule having some specified

symmetries, but in reciprocal space rather than real space.

Items 2 and 3 suggest that the Berry curvature will be of most interest

in magnetic systems, i.e., those with spontaneously broken TR symmetry.

We shall see in Chs. 5 and 7-8 that this is indeed the case. Certainly the

Berry curvature vanishes everywhere in the BZ for many nonmagnetic cen-

trosymmetric materials such as Si (diamond structure), Cu (fcc structure),

or Bi2Se3 (a van der Walls bonded layered structure). Nevertheless, it turns

out that Berry-phase concepts also play a central role in aspects of these

materials, as will be discussed in Chs. 4 and 6.

Since we have mentioned magnetic materials, we should briefly return to

the subject of Sec. 2.1.2 and clarify the treatment of spin and spin-orbit

coupling.

● If spin-orbit coupling is not included, then the systems of spin-up and spin-

down electrons can be treated independently. If in addition the system is

nonmagnetic, then spin up and down behave identically; we can think of

the electrons as scalar particles and label bands by a single integer n,

including a factor of two in sums and integrals such as in Eq. (2.41) to

account for spin degeneracy. In a magnetic system, instead, we need to

add a spin label s to the Bloch functions ∣unsk⟩ and carry the same label

on Berry-related quantities such as φns, Ans, and Ωns.

● If spin-orbit coupling is included, then the number of band labels n is dou-

bled, and the Bloch functions ∣unk⟩ are spinor wavefunctions in the sense

of Eq. (2.19). The Berry-related quantities carry only the label n, but the

inner products in Eqs. (3.57-3.58) are taken between spinor wavefunctions.

We shall soon have to ask what physical interpretation can be given to the

Berry phases and curvatures associated with the energy bands, but before

we do, let us discuss what kinds of paths the Berry phases might be defined

on. For a 1D crystal (of lattice constant a) there is really only one closed

path of interest, namely, the one that circulates around the BZ. Recall from

the discussion on pp. 39-40 that the BZ of a 1D system is best viewed as a

closed loop or unit circle. This is illustrated in Fig. 3.9, where the panel at left

shows the conventional view in which an energy band En(k) is plotted as a

periodic function of k with period 2π/a. However, this picture is misleading,

since a state at k is one and the same as a state at k+2π/a. In other words,

these two wavevectors are duplicate labels for the same state. The panel at

right shows a more unconventional and yet more natural way of thinking

about an energy band, in which the wavevector axis is wrapped into a circle
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Figure 3.9 At left, conventional view of a 1D band structure, with the first
Brillouin zone highlighted in black and the extended-zone scheme shown in
gray. At right, a more topologically natural view in which the Brillouin zone
is wrapped onto a circle and the band structure is plotted on a cylinder.

and the energy is plotted on the surface of the resulting cylinder. Then a

possible object of interest is the Berry phase

φn = ∮
BZ
An(k)dk = ∮

BZ
⟨unk∣i∂kunk⟩ (3.61)

defined on this loop. The notation ∮BZ indicates an integral taken around

the loop formed by the 1D BZ.

Such a Berry phase was first discussed by Zak (1989) and is sometimes

called a “Zak phase.” In the introductory paragraph of this paper, Zak listed

some of the areas in which the concept of the Berry phase was making an

impact in atomic, molecular, and nuclear physics, and then wrote

“It seems, however, that one important and natural system for the appearance of
Berry’s phase was left out. We have in mind the motion of an electron in a periodic
solid.”

This farsighted observation by Zak set the stage for many of the later de-

velopments that are discussed in this book. At the time, Zak was mainly

concerned with symmetry properties and the relation of the Berry phase to

the so called “band center,” which we now identify with a Wannier center

(see Sec. 3.5). It was to take a few years before the connection to the the-

ory of electric polarization would be made, as will be discussed in the next

chapter.

There is an important subtlety that arises when it comes to computing

this Berry phase. For the Berry phase to be well-defined, we need ∣unk⟩ to

be a smooth function of k everywhere on the loop. If we represent the loop

by letting k range from 0 to 2π/a, for example,13 then we also have to insure

smoothness across the artificial boundary point where k crosses from 2π/a

13 Similar issues arise for any other choice of BZ, such as from −π/a to π/a.
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back to 0. That is, we must insist that

ψn,k=2π/a(x) = ψn,k=0(x) . (3.62)

That is, the Bloch functions at the two ends of the interval [0,2π/a] must be

equal not just up to a phase, but with the same phase. In an extended-zone

context, where quantities such as Enk are regarded as periodic functions of

k, Eq. (3.62) is referred to as the “periodic gauge condition.”

But recall that the Berry connection is defined not in terms of the Bloch

functions ∣ψnk⟩, but their cell-periodic partners ∣unk⟩. Using Eq. (2.37), the

condition of Eq. (3.62) translates to the condition

un,k=2π/a(x) = e
−2πix/aun,k=0(x) . (3.63)

So the vectors ∣un,k=2π/a⟩ and ∣un,k=0⟩ are not equal! And it is not just that

they are unequal up to a global phase, since the phase factor in Eq. (3.63) is

x-dependent. This is an essential feature of the cell-periodic Bloch functions;

we have to learn to live with it.

To compute the Berry phase in practice, we discretize the BZ into N

equal intervals and compute ∣unkj ⟩ for j = 0, ...,N − 1 with kj = 2πj/N .

This typically involves calling a matrix diagonalization routine that returns

eigenvectors whose phase is not under our control. Thus, if we were to call

this routine to compute ∣unk0⟩ and ∣unkN ⟩ independently, we cannot assume

that they will obey Eq. (3.63). Instead, we use Eq. (3.63) to construct ∣unkN ⟩

from ∣unk0⟩, with the correct phase relation. That is, we compute the Berry

phase of band n as

φn = −Im ln [⟨unk0 ∣unk1⟩⟨unk1 ∣unk2⟩...⟨unkN−1
∣e−2πix/a

∣unk0⟩] . (3.64)

It is important not to forget the phase factor in the last term when com-

pleting the loop, i.e., when k wraps from k = 2π/a back to k = 0.

In two dimensions, there is more freedom in the choice of path. Some

examples are shown in Fig. 3.10. This figure is drawn in terms of the reduced

wavevectors κj of Eq. (2.30), each of which runs between 0 and 2π. Paths

A and B are simple closed paths. Remember that the left and right edges of

the BZ are identified, as are the top and bottom, with the BZ regarded as a

closed torus. From this point of view, there is no intrinsic difference between

a path like A that lies entirely inside the square BZ shown in the figure, and

one like B that traverses the artificial boundary at κ1 = 2π.14

On the other hand, paths C and D wind around the BZ in a nontrivial

way, in analogy to the 1D path described earlier. Path C returns to itself

14 For the latter, however, one would have to include phase factors like the one in Eq. (3.65)
when crossing the conventional BZ boundaries.
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Figure 3.10 Sketch of four possible closed paths in the BZ of a 2D crystal.
Paths A and B are trivially closed, while paths C and D wrap by reciprocal
lattice vector b1 and b2 respectively.

after κ1 has been incremented by 2π. This corresponds to translating k by

b1, so when crossing the artificial boundary at κ1 = 2π an extra phase factor

⟨unkN−1
∣e−ib1⋅r∣unk0⟩ (3.65)

has to be included, in analogy with Eq. (3.64). Similar considerations apply

to path D, which winds in direction κ2 instead.15

In 2D, we can also define a Chern number mn, defined via

∮
BZ

ΩdS = 2πmn , (3.66)

associated with each band n. As in Eq. (3.61), the notation ∮BZ denotes an

integral over the BZ regarded as a closed manifold, but now it is a surface

integral over a 2D manifold. In practice the Chern number is most easily

computed by discretizing the 2D BZ on an N ×N mesh kj1j2 = (j1/N)b1 +

(j2/N)b2. One then computes the eigenvectors on the (N +1)2 mesh points

as the jµ (µ=1,2) run over 0, ...,N , computes the Berry phase around each of

the N2 plaquettes [with branch choice (−π,π)], and sums these.16 Following

the argument given in Sec. 3.2.2, this must be an integer multiple of 2π,

from which it is straightforward to extract the Chern index mn.

In 2D, a periodic gauge is defined as one for which ∣ψn,k+bµ⟩ = ∣ψnk⟩ on the

boundaries of the conventional BZ, so that it can be wrapped smoothly onto

the 2-torus. A periodic gauge that is also smoothly defined on the interior of

the BZ would thus be smooth and continuous everywhere on the 2-torus. But

recall from the discussion on p. 79 that it is impossible to construct such a

gauge when the Chern index mn is nonzero. Such a topological obstruction

15 Similar factors would have to be included twice for path B as well.
16 Alternatively the states at kµ = N can be obtained from those at kµ = 0 by multiplying by

e−ibµ ⋅r following Eq. (3.63).
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causes no problem for the calculation of particular Berry phases, such as

those along paths A-D, or of the Chern number, which is an integral of

a gauge-invariant quantity. But it will have other consequences, especially

regarding the ability to construct Wannier functions, as we shall discuss in

the next section.

For a 3D crystal the BZ forms a 3-torus. Concerning Berry phases, we can

consider simple loops that close without winding around the 3-torus, or ones

that wind in the b1, b2, or b3 direction (e.g., like path D in Fig. 3.10 but

in 3D). Concerning Chern indices, we can compute these on any closed 2D

manifold lying in the 3D BZ. For example, the Fermi surface of a metal is a

suitable closed surface on which a Chern index can be computed. But we can

also consider 2D manifolds that span the 3D BZ. For example, consider the

Chern index m1n(k1) defined on the κ2-κ3 “plane” lying at some κ1. This

“plane” is really a 2-torus when we recall that the “edges” at κj = 0 and 2π

can be regarded as being seamlessly glued together. But if band n is isolated

(i.e., it does not touch band n − 1 or n + 1 anywhere in the 3D BZ), then

all properties of band n on this plane must evolve smoothly as κ1 is varied.

In particular, m1n(κ1) must be a continuous function of κ1. But it is also

an integer-valued function, and a continuous inter-valued function must be

completely constant. We are thus free to compute it at any κ1 of our choice

(say κ1=0) and to drop the κ1 argument, writing it simply as m1n. Similarly,

defining m2n and m3n to be the Chern indices for κ3-κ1 and κ1-κ2 planes

respectively, we conclude that any fully isolated band n in a 3D crystal is

characterized by a triplet of integer Chern indices (mn1,mn2,mn3).

So far, all of this is very abstract. What, if any, physical interpretation

can be attached to the Berry-phase quantities described above? This is the

subject that will concern us in subsequent chapters. Before we finally turn

to this part of the story, however, it is useful to cover two more details of a

somewhat mathematical nature. These are the construction of the Wannier

representation and the multiband treatment, which will be discussed in the

two remaining sections of this chapter.

Exercises

Exercise 3.4.1 Exercises

3.5 Wannier functions

If we have an isolated band En(k), i.e., one that never touches the band

below or above it, then we have a right to expect that En(k) is a smooth
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and periodic function of k in 3D reciprocal space. It is then natural to

consider its Fourier transform to real space, defined by

EnR =
Vcell

(2π)3 ∫BZ
e−ik⋅REnk d

3k , (3.67a)

⇕ FT

Enk = ∑
R

eik⋅REnR . (3.67b)

The second equation above is the inverse transform; the consistency between

this pair of equations is associated with the two orthogonality identities

∫
BZ
eik⋅(R−R

′) d3k =
(2π)3

Vcell
δR,R′ , (3.68)

which is relatively intuitive,17 and

∑
R

ei(k−k
′)⋅R

=
(2π)3

Vcell
δ3

(k − k′), (3.69)

which is less so.18 These and other Fourier transform conventions are sum-

marized in App. B. Insofar as En(k) is smooth in k-space, we can expect

EnR to be large only for a few lattice vectors R near the origin, and to decay

rapidly with increasing ∣R∣.

Now suppose we can choose a smooth and periodic gauge for the Bloch

functions ∣ψnk⟩ associated with this band. Having done so, we should be able

to Fourier transform these in a similar way, i.e., by defining

∣wnR⟩ =
Vcell

(2π)3 ∫BZ
e−ik⋅R ∣ψnk⟩ d

3k , (3.70a)

⇕ FT

∣ψnk⟩ = ∑
R

eik⋅R ∣wnR⟩ . (3.70b)

The Fourier-transform partners to the Bloch functions defined in Eq. (3.70a)

are known as the Wannier functions associated with band n; Eq. (3.70b)

provides the inverse transform back from Wannier to Bloch functions. Again,

the idea is that as long as ψnk(r) is a smooth function of k, then wnR(r)

decays rapidly with ∣R∣ for a given r. Actually, it turns out that each Wannier

function wnR(r) is a localized function centered near R, so it is more natural

to describe the situation by saying that wnR(r) decays rapidly with ∣r−R∣ for

a given R. Moreover, since the Fourier transform expressed by Eq. (3.70) is

17 The phases cancel on the left unless R=R′, in which case the left side is the BZ volume.
18 The wavevectors k on the right side should be interpreted as living on the 3-torus, i.e., k − k′

can be replaced by k − k′ +G for any reciprocal lattice vector G.
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really just a special case of a unitary transformation, we can view the Bloch

and Wannier functions as providing two different basis sets to describe the

same manifold of states associated with the electron band in question.

A word of warning is in order concerning the inner-product and normal-

ization conventions to be used here. Recall that the true Bloch function ∣ψk⟩

is related to the cell-periodic function ∣uk⟩ by ψk(r) = eik⋅ruk(r). Also let

∣χk⟩ and ∣vk⟩ be another pair related in the same way. For the cell-periodic

functions we adopt the inner-product convention

⟨uk∣vk′⟩ ≡ ∫
Vcell

u∗k(r)vk′(r)d
3r , (3.71)

since the “natural domain” of such a function is a single unit cell. Moreover,

we normalize ψnk(r) and unk(r) such that

∫
Vcell

∣ψnk(r)∣
2
= ∫

Vcell
∣unk(r)∣

2
= ⟨unk∣unk⟩ = 1 . (3.72)

However, we use a very different inner-product convention for the Bloch

functions themselves, namely

⟨ψk∣χk′⟩ ≡ ∫ ψ∗k(r)χk′(r)d
3r (3.73)

where the integral is over all space. This is a natural choice for the Bloch

functions, which describe physical electrons that are delocalized throughout

the crystal. It follows that ⟨ψnk∣ψnk⟩ is not unity, but is instead infinite,

within our conventions. A useful formula, somewhat analogous to Eq. (3.69),

is

⟨ψk∣χk′⟩ =
(2π)3

Vcell
⟨uk∣vk′⟩ δ

3
(k − k′) . (3.74)

This formula is derived in App. B as Eq. (B.13). From this it follows that

the Wannier functions obey the orthonormality condition ⟨wnR∣wn′R′⟩ =

δn,n′ δR,R′ , as will be shown in Ex. 3.5.1.

3.5.1 Properties of the Wannier functions

In standard solid state physics texts it is demonstrated that the Wannier

functions have the following interesting and useful properties:

1. As hinted above, they are localized functions in real space. That is,

∣wnR(r)∣ → 0 as ∣r −R∣ gets large. (3.75)

We can think of ∣wnR⟩ as being peaked in cell R, even if its tails extend

into neighboring unit cells.
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Figure 3.11 Sketch of three adjacent Wannier functions wnR(x) for band
n in a 1D crystal of lattice constant a. The Wannier center assigned to the
home unit cell R = 0 is shown as the full curve; dotted and dashed curves
represent those in cells at −a and a respectively. The Wannier functions are
mutually orthonormal at the same time that they are translational images
of one another.

2. The Wannier functions are translational images of one another, i.e.,

wnR(r) = wn0(r −R) . (3.76)

More formally, ∣nR⟩ = TR ∣n0⟩ where, as in Sec. 2.1.3, TR is the operator

that translates the system by lattice vector R.

3. The Wannier functions form an orthonormal set, i.e.,

⟨wnR∣wnR′⟩ = δRR′ . (3.77)

4. The Wannier functions span the same subspace of the Hilbert space as is

spanned by the Bloch functions from which they are constructed. Defin-

ing Pn to be the projection operator onto band n, this property can be

expressed as

Pn =
Vcell

(2π)3 ∫BZ
∣ψnk⟩⟨ψnk∣ d

3k = ∑
R

∣wnR⟩⟨wnR∣ . (3.78)

From this it also follows that the total charge density ρn(r) in band n,

ρn(r) = −e ⟨r∣Pn∣r⟩ = −e
Vcell

(2π)3 ∫BZ
∣ψnk(r)∣

2 d3k = −e∑
R

∣wnR(r)∣2 ,

is the same when computed in either representation.

The first three properties above are illustrated in Fig. 3.11, where a pos-

sible set of Wannier functions are sketched for a 1D crystal. Each one is

exponentially localized and normalized, and the neighboring Wannier func-

tions are periodic images of one another. Moreover, the Wannier functions
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are shown as having a negative lobe so that ⟨wn0∣wna⟩ can plausibly van-

ish as a result of cancellation between contributions of opposite sign in the

integral over x.

It is also possible to prove two remarkable properties about matrix ele-

ments of operators between Wannier functions:

5. The Hamiltonian matrix elements between Wannier functions are band-

diagonal, and the diagonal elements are nothing other than the coeffi-

cients EnR in the Fourier expansion of the band energy:

⟨wn0∣H ∣wnR⟩ = EnR . (3.79)

6. The position matrix elements between Wannier functions are

⟨wn0∣r∣wnR⟩ = AnR . (3.80)

In this last equation the AnR are the Fourier transform coefficients of the

Berry connection An(k) defined in Eq. (3.57). That is, they are related in

complete analogy with Eq. (3.67) or (3.70) by

AnR =
Vcell

(2π)3 ∫BZ
e−ik⋅R An(k) d

3k , (3.81a)

⇕ FT

An(k) = ∑
R

eik⋅R AnR . (3.81b)

We shall return shortly to provide the mathematical derivations of Eqs. (3.79)

and (3.80), but before we do, let us comment on their significance. Equa-

tion (3.79) is a remarkable result, as it implies that the Wannier functions

provide an exact tight-binding representation of the dispersion Enk of band

n. That is, we construct a TB model consisting of one orbital per cell having

site energy En0 and hoppings EnR to its neighbors located at relative cell R.

In this context, Eq. (2.63) is exactly Eq. (3.67b), so that this Wannier-based

TB model reproduces the exact band dispersion. Since the Wannier functions

are localized, the hopping matrix elements fall off quickly with distance, so

that only a small number of hoppings typically have to be retained.

Equation (3.80) is in some ways even more remarkable. It says that ma-

trix elements of the position operator between Wannier functions have a

form that is highly reminiscent of the Berry-phase formalism. An especially

important quantity is the center of charge of a Wannier function,19 defined

19 This is analogous to the center of mass of an object, but defined based on charge rather than
mass.
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as the diagonal position-operator matrix element

r̄n = ⟨wn0∣r∣wn0⟩ . (3.82)

From Eq. (3.80) this is nothing other than An0, which Eq. (3.81a) tells us

is just the BZ average of the Berry connection An(k), i.e.,

r̄n =
Vcell

(2π)3 ∫BZ
An(k) d

3k

=
Vcell

(2π)3 ∫BZ
⟨unk∣i∇kunk⟩ d

3k . (3.83)

In 1D this becomes x̄n = (a/2π) ∫
2π/a

0 ⟨unk∣i∂kunk⟩dk or

x̄n = a
φn
2π

. (3.84)

That is, the location of the Wannier center (in units of the lattice constant)

is nothing other than the Berry phase associated with band n (in units

of 2π)! This connection between Wannier centers and Berry phases is of

fundamental importance, and lies at the heart of the developments to be

presented in the next chapter.

We now return to the derivations of Eqs. (3.79) and (3.80), which were

deferred earlier. For the Hamiltonian acting on a Wannier function we have

H ∣wnR⟩ =
Vcell

(2π)3 ∫BZ
e−ik⋅RH ∣ψnk⟩ d

3k (3.85)

which we then multiply on the left by ⟨wn0∣. Since H ∣ψnk⟩ has the form of

a Bloch function of wavevector k,20 we can use Eq. (3.74) to obtain

⟨wn0∣H ∣wnR⟩ =
Vcell

(2π)3 ∫BZ
e−ik⋅R ⟨unk∣Hk∣unk⟩ d

3k (3.86)

which reduces to Eq. (3.79) using Enk = ⟨unk∣Hk∣unk⟩ with Eq. (3.67).

The situation is illustrated for a band in a 2D crystal in Fig. 3.12. The po-

sition of the Wannier center in the home unit cell at r̄n is given by Eq. (3.82),

or equivalently, Eq. (3.83). The Hamiltonian matrix elements between Wan-

nier functions, defined in Eq. (3.86), are shown as the dashed hoppings in

the figure. If all further neighbors are included, the tight-binding Hamilto-

nian defined in this way is guaranteed to reproduce the bandstructure of

the crystal exactly. If only near-neighbor hoppings are retained, it will not

longer be exact, but may still provide a very useful approximation to the

full bandstructure.
20 Actually it is just Enk∣ψnk⟩ but we keep it in this form for the moment to make an analogy

later with Eq. (3.89).
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Figure 3.12 Sketch of four of the infinite lattice of Wannier functions (ir-
regular blobs) for a single band in 2D with lattice vectors a1 and a2.
Crosses mark the Wannier centers located at r̄n + R; dashed lines indi-
cate the nearest-neighbor hoppings t1 = ⟨wn0∣H ∣wna1⟩, t2 = ⟨wn0∣H ∣wna2⟩,
and t12 = ⟨wn0∣H ∣wn,a1+a2⟩ of the corresponding tight-binding model.

The equation that corresponds to Eq. (3.85), but for the position operator

acting on ∣wnR⟩ is a bit trickier to derive. We do it first in 1D, where we

find that

(x −R)∣wnR⟩ =
a

2π
∫

2π/a

0
(x −R) eik(x−R)

∣unk⟩ dk

=
a

2π
∫

2π/a

0
( − i∂ke

ik(x−R)) ∣unk⟩ dk

=
a

2π
∫

2π/a

0
eik(x−R)(i∂k∣unk⟩) dk . (3.87)

In taking the last step above we have applied an integration by parts, making

use of the fact that eik(x−R) unk(x) = ψnk(x−R) has the same value at k=0

and 2π/a. Generalizing this result to 3D and moving R to the other side,

we find that the analogy to Eq. (3.85) is

r ∣wnR⟩ =
Vcell

(2π)3 ∫BZ
e−ik⋅R [eik⋅r(R + i∇k) ∣unk⟩] d

3k . (3.88)

The object in brackets on the right-hand side has the form of a Bloch func-

tion of wavevector k, so we can again multiply on the left by ⟨wn0∣ and use

Eq. (3.74) to obtain

⟨wn0∣r∣wnR⟩ =
Vcell

(2π)3 ∫BZ
e−ik⋅R ⟨unk∣R + i∇k∣unk⟩ d

3k . (3.89)

The term involving R yields R δ0,R = 0 and can be discarded, yielding the

important result

⟨wn0∣r∣wnR⟩ =
Vcell

(2π)3 ∫BZ
e−ik⋅R ⟨unk∣i∇kunk⟩ d

3k . (3.90)
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We recognize the right-hand side as AnR from Eq. (3.81a), giving Eq. (3.80)

as claimed.

3.5.2 Gauge freedom

We emphasized earlier that the phases of the Bloch functions are not unique;

they can be twisted by a gauge change e−iβ(k) as in Eq. (3.59). What effect

does this have on Eqs. (3.79) and (3.80)? Because Eq. (3.86) is diagonal

in k the phase factors eiβ(k) cancel out, and the matrix elements EnR are

exactly unchanged by the gauge transformation. On one level this appears

surprising, since the Wannier functions themselves may change shape, or

become somewhat more or less localized, as a result of the gauge change.

On the other hand, we showed that the EnR are really just the Fourier-

transform coefficients of the bandstructure Enk, which are unique, so they

must indeed be gauge-invariant.

Before discussing the effect on the real-space matrix elements in Eq. (3.80),

it is worthwhile to review the distinction between a progressive and a radical

gauge transformation that was introduced in Sec. 3.1.2. In 1D, the idea is

that each gauge transformation is characterized by a winding number m,

which is the integer appearing in Eq. (3.19); the transformation is “progres-

sive” if m=0 and “radical” otherwise. In 3D k-space the gauge twist eiβ(k)

is characterized by a triplet of integers that we denote by (n1, n2, n3), such

that β(k+bj) = β(k)+2πnj where bj is a primitive reciprocal lattice vector

as defined above Eq. (2.29). Letting R = n1a1+n2a2+n3a3 be the real-space

lattice vector defined by this triplet of integers, we find that each gauge

transformation is characterized by a lattice vector R such that

β(k +G) = β(k) +G ⋅R . (3.91)

This condition is necessary and sufficient to insure that e−iβ(k) is invariant

under a translation by G, i.e., that the transformation preserves the periodic-

gauge property. A 3D gauge transformation is said to be “progressive” if

R=0 and “radical” otherwise.

From the above, it is clear that any 3D gauge transformation can be

decomposed into two steps: a radical part β(k) = k ⋅R for some R, which we

denote as a “shift,” and a progressive part that obeys β(k+G) = β(k). The

effect of the shift is just to transform Ank via Eq. (3.60) into Ãnk = Ank+R

so that ˜̄rn = r̄n+R, i.e., the Wannier center simply shifts by a lattice vector.

In fact what has happened is that the Wannier functions themselves have

all shifted by a lattice vector, i.e., ∣w̃nR′⟩ = ∣wn,R′+R⟩. This is really just a

relabeling of the original Wannier functions by shifting all of them by the
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same lattice vector R, or equivalently, a change in the choice of the Wannier

function assigned to the home unit cell R=0.

The effect of the progressive part can easily be worked out via Eq. (3.60),

and we find that

⟨w̃n0∣r∣w̃nR⟩ = ⟨wn0∣r∣wnR⟩ +
Vcell

(2π)3 ∫BZ
e−ik⋅R∇kβ(k) d

3k

= ⟨wn0∣r∣wnR⟩ + iR
Vcell

(2π)3 ∫BZ
e−ik⋅R β(k) d3k (3.92)

where an integration by parts has been applied.21 For the diagonal element

(R=0) the second term vanishes and we obtain the important result

˜̄rn = r̄n . (3.93)

This implies that the centers of charge of the Wannier functions are gauge-

invariant in the progressive case. More generally ˜̄rn = r̄n + R where R

characterizes the shift part of the transformation, but it remains true that

the lattice of Wannier centers remains invariant. In the 1D case, this is

nothing other than the gauge-invariance of the Berry phase (modulo 2π) in

Eq. (3.84).

To summarize this part, we have found that the band subspace associated

with band n can be thought of equally well as spanned by the Bloch states

∣ψnk⟩ for k running over the BZ, or by a periodic lattice of localized Wannier

functions ∣wnR⟩ constructed from the ∣ψnk⟩ via a Fourier transform. Because

of the gauge freedom in the phases of the ∣ψnk⟩, the Wannier functions

are not unique, but the location of the Wannier center r̄n in the home

unit cell is unique up to a lattice vector. This gauge-invariance property

provides a strong hint that the Wannier charge centers may be related to

some physically measurable property; we shall see in the next chapter that

this is indeed the case.

Exercises

Exercise 3.5.1 Using Eq. (3.74), prove the orthonormality condition

⟨wnR∣wn′R′⟩ = δn,n′ δR,R′ for the Wannier functions. This implies that

each Wannier function is automatically orthogonal to all of its periodic

images for the same band, as well as to any Wannier function belonging

to a different band, regardless of the choice of gauge.

Exercise 3.5.2

21 The last term in Eq. (3.92) is just iRβ(R) where β(R) is the Fourier transform of β(k).
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(a) Show that the spatial second moment of a Wannier function for

band n in 1D is given by

⟨wn∣x
2
∣wn⟩ =

a

2π
∫

2π/a

0
⟨∂kunk∣∂kunk⟩ dk .

Here ∣wn⟩ = ∣wn0⟩ is the Wannier function in the home unit cell.

(b) Using 1 = Pnk +Qnk where Pnk = ∣unk⟩⟨unk∣, show that

⟨wn∣x
2
∣wn⟩ = Ω̃n +

a

2π
∫

2π/a

0
A2
nk dk

where

Ω̃n =
a

2π
∫

2π/a

0
⟨∂kunk∣Qnk∣∂kunk⟩ dk .

(c) The quadradic spatial spread of the Wannier function, or mean

square variation relative to its center, is

Ωn = ⟨wn∣(x − x̄n)
2
∣wn⟩ = ⟨wn∣x

2
∣wn⟩ − x̄

2
n .

Show that this is also given by

Ωn = Ω̃n +
a

2π
∫

2π/a

0
(Ank − Ān)

2 dk

where we have used Ān, the BZ average of Ank, as a synonym for x̄n.

(d) Show that Ω̃n is gauge-invariant.

(e) Now consider the change of Ωn under a progressive gauge change

(i.e., one for which βλ=1 = βλ=0). Since Ān is also invariant in this con-

text, conclude that the minimizing gauge is one that makes Ank = Ān
independent of k. (This is just the “twisted parallel-transport gauge”

discussed on p. 70.)

Note: The generalization of these results to 2D and 3D is non-trivial,

because the Berry connection cannot be flattened to be constant in all

Cartesian directions simultaneously. See Marzari and Vanderbilt (1997)

for details.

Exercise 3.5.3 Consider a translation of the entire crystal by an arbi-

trary vector r0 (or equivalently, the result of moving the origin to −r0),

such that ψ̃nk(r) = ψnk(r − r0). Show that the Wannier centers move

to ˜̄rn = r̄n + r0.

3.6 Multiband formulation

In order to carry out the Wannier construction for band n above, we had

to assume that ∣ψnk⟩ was smooth and periodic over the entire BZ. This is
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Figure 3.13 Band structure of silicon plotted along several high-symmetry
lines in the BZ. The four bands at negative energies are the occupied valence
bands. Note degeneracies among bands at symmetry points and along some
symmetry lines.

usually not hard to arrange for an isolated band, i.e., one that remains sep-

arated by a finite energy gap from the next-lowest and next-highest band

everywhere in the BZ. Unfortunately, that situation is actually rather un-

common. In most crystals, the occupied valence bands become degenerate at

some high-symmetry points, and as a result the Bloch functions, defined as

energy eigenstates, often have a singularity as a function of k in the vicinity

of the degeneracy. This presents a problem not just for the formulation and

construction of Wannier functions, but for other quantities to be discussed

later, such as the electric polarization.

Fortunately, there is an elegant solution to these problems. One can con-

sider a group of bands that are glued together by degeneracies in this way

as comprising a “composite group,” and develop methods for treating this

group as a whole. This is the subject of the this last section of Ch. 3.

3.6.1 Multiband Wannier functions

Consider, for example, the bandstructure of Si, shown in Fig. 3.13. There are

four occupied valence bands covering the region from about −15 eV to the

valence-band maximum at 0 eV. Bands 1 and 2 are degenerate at the zone-

boundary point X, while bands 2-4 are degenerate at the BZ center Γ. If we

would try to construct a Wannier function for band n=2 using Eq. (3.70a),

we would encounter a serious problem in that ∣ψ2k⟩ has a singularity for k

at Γ. This occurs because limk→0 ∣ψ2k⟩ depends on the direction along which

the limit is taken; the states turn out to be of Si 3px, 3py, or 3pz character

when the approach is along the (100), (010), or (001) axis respectively. A

similar non-analytic behavior occurs at the X point because of the crossing
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with the lowest band. In the context of a Fourier transform, a sharp structure

in k-space translates into a loss of localization in r-space, which is to say that

the resulting Wannier function wnR(r) would no longer be well localized.22

Does this mean that it is hopeless to construct well-localized Wannier

functions for such a system? Luckily, the answer is no, as long as we are

willing to abandon the notion that each Wannier function should be associ-

ated with one and only one energy band. Instead, we ask for a set of four

Wannier functions ∣wnR⟩ (n = 1, ...,4) that spans the same subspace as the

Bloch bands ∣ψnk⟩ considered as a group. That is, we construct a set of

Wannier functions

∣wnR⟩ =
Vcell

(2π)3 ∫BZ
e−ik⋅R ∣ψ̃nk⟩ d

3k (3.94)

out of a set of Bloch-like functions ∣ψ̃nk⟩ that are smooth functions of k

everywhere in the BZ, and that are related to the true (energy-eigenstate)

Bloch functions via a unitary transformation of the form

∣ψ̃nk⟩ =
4

∑
m=1

Umn(k) ∣ψmk⟩ . (3.95)

Here Umn(k) is a manifold of 4 × 4 unitary matrices whose k-dependence

near Γ and X has to be chosen in such a way as to “iron out” the nonanalytic

behavior of ∣ψnk⟩, so that ∣ψ̃nk⟩ is smooth everywhere. If this can be done,

then the Wannier functions resulting from Eqs. (3.94-3.95) should be legit-

imate exponentially-localized Wannier functions similar to those generated

from single isolated bands.

It is far from obvious that such an ironing-out procedure, resulting in

globally smooth and periodic ∣ψ̃nk⟩, is always possible. Clearly the mani-

fold Umn(k) must itself have nonanalyticities that cancel out those of the

underlying ∣ψmk⟩. It turns out that, under rather general conditions, this

can always be done. We shall return to this point in Sec. 3.6.2, where we

will see that the ironing-out can always be done locally in any small region

within the BZ. The fact that it can be done globally follows from a deep

mathematical analysis of Brouder et al. (2007). For now, let us just assume

that this step is possible.

In general, we define an isolated group of J bands to be a set of J consec-

utive energy bands that do not become degenerate with any lower or higher

band anywhere in the BZ. (In insulators this is normally taken to coincide

with set of occupied valence bands, but other choices are often possible.)

22 Typically, wnR(r) acquires power-law tails, such that matrix elements of operators such as H
and r are no longer well-defined.
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Noting that the ∣ψnk⟩ and ∣unk⟩ transform in the same way, we can rewrite

and generalize Eq. (3.95) as

∣ũnk⟩ =
J

∑
m=1

Umn(k) ∣umk⟩ , (3.96)

which we refer to as a multiband or non-Abelian23 gauge transformation.

Equation (3.96) is the natural generalization of Eq. (3.59) to the multiband

case, since the special case of diagonal matrices Umn(k) = δmn e
−iβn(k) cor-

responds to the application of a simple phase twist βn(k) to each band

individually.

Note that the ∣ψ̃nk⟩ are no longer eigenstates of H, since we have mixed

different energy bands to construct them. Nevertheless, because the trans-

formations in Eqs. (3.94) and (3.95) are both unitary, we can equally well

use the ∣ψnk⟩, the ∣ψ̃nk⟩, or the Wannier functions ∣wnR⟩ constructed from

the latter, as a representation of the occupied band subspace. Thus, total

charge densities constructed from any one of these sets of functions must be

identical, as are the expectation values of other operators when expressed

as traces over the band subspace.

Once again, the Wannier functions are non-unique, because there are

many choices of multiband gauge transformations Umn(k) that can success-

fully iron out the nonanalyticities of the Bloch energy eigenstates. If fact,

as soon as we have one such gauge transformation, we can always construct

another one by following with second multiband gauge transformation hav-

ing the form of Eq. (3.96), but this time with a U(k) that itself is smooth

and periodic everywhere in the BZ. As a result, the Wannier functions may

change shape, becoming somewhat more or less localized.

In spite of this gauge-dependence, the six properties of single-band Wan-

nier functions enumerated in Sec. 3.5.1 all have their counterparts in the

multiband case. Equations (3.75) and (3.76) remain true, while Eq. (3.77) is

generalized to a multiband orthonormality condition ⟨wmR∣wnR′⟩ = δmn δRR′ .

As for Eq. (3.78), the total band projection P = ∑nPn is now invariant.

The fact that the Wannier functions provide an exact TB-like represen-

tation remains true, with the modification that instead of just computing

the EnR as in Eq. (3.79), we have to construct a J × J Hamiltonian matrix

Hmn(R) = ⟨wm0∣H ∣wnR⟩. This is then Fourier transformed in the manner

of Eq. (3.81b) to obtain Hmn(k), i.e.,

Hmn(k) = ∑
R

eik⋅RHmn(R) , (3.97)

23 The name refers to the fact that J × J matrices generally do not commute, and to the
connection with non-Abelian gauge theories.
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from which it is easily shown that Hmn(k) = ⟨ψ̃nk∣H ∣ψ̃nk⟩. The eigenvalues

Enk are then the eigenvalues of the matrix secular equation det[H(k) −

Enk] = 0.

As for the position matrix elements of Eq. (3.80), it is again most interest-

ing to focus on the diagonal elements, i.e., the Wannier centers r̄n. Under a

multiband gauge transformation these may shift in position, but as we shall

see in Ex. 3.6.1, the sum of Wannier-center vectors

r̄tot =
J

∑
n=1

r̄n (3.98)

remains multiband-gauge-invariant, modulo a lattice vector, just as for the

single-band Wannier center as expressed in Eq. (3.93).24 This fact will prove

important later on.

If the Wannier functions are not unique, how can we calculate them and

plot them in practice for materials of interest? An answer to this question

was provided by Marzari and Vanderbilt (1997), where we suggested to

focus on the maximally-localized Wannier functions (MLWF), defined as

those chosen according to the criterion of minimizing the sum of quadratic

spreads of the Wannier functions in one unit cell,25

Ωspread =
J

∑
n=1

[⟨wn0∣r
2
∣wn0⟩ − ∣r̄n∣

2
] , (3.99)

where the quantity in brackets represents the mean square variation of the

Wannier electron density away from its mean position r̄n = ⟨wn0∣r∣wn0⟩.

Such a construction is by now a standard procedure in the computational

electronic structure community, as reviewed by Marzari et al. (2012) and

implemented in the open-source Wannier90 code package (Mostofi et al.,

2008, 2014).

As an example, Fig. 3.14 shows a MLWF constructed for Si in this way.

The procedure results in four equivalent Wannier functions, each of which is

located on one of the four nearest-neighbor Si–Si bonds in the unit cell, and

each one having the character of a σ bond orbital, i.e., a bonding combi-

nation of two inward-directed sp3 hybrids from the two neighboring atoms.

We emphasize that there is no one-to-one correspondence between the four

Wannier functions in the unit cell and the four bands in Fig. 3.13; instead,

24 On p. 98 we introduced the distinction between radical and progressive gauge transformations

in the single-band case, depending on whether or not eiβ(k) winds by a nonzero multiple of
2π as k loops around the BZ. For the multiband gauge transformation of Eq. (3.96), the
corresponding question is whether det[U(k)] has a corresponding winding. For a progressive
gauge transformation there is no such winding and r̄tot is fully gauge-invariant.

25 Despite a similarity in notation, Ωspread has no relation to a Berry curvature.
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Figure 3.14 One of the four maximally localized Wannier functions in Si,
shown as an amplitude contour plot on a (110) plane containing the chains
of Si atoms (filled circles connected by bonds). Inset: 3D view showing
isosurfaces of the Wannier function at a positive (central region) and a
negative (two end caps) contour level.

the four Wannier functions taken together span the same space as is spanned

by the four lowest bands in Fig. 3.13.

It is satisfying to see that the MLWfs correspond to our usual understand-

ing of the chemical bonding in Si. This turns out to be a rather general

feature of the MLWF construction (Marzari and Vanderbilt, 1997; Marzari

et al., 2012), and is responsible in part for its popularity. For the purposes

of this book, however, the MLWF criterion is not particularly important.

When speaking of Wannier functions in the multiband case, we shall only

require that these are reasonably well localized, such that Hamiltonian and

position matrix elements between Wannier functions are well defined.

3.6.2 Multiband parallel transport

In Sec. 3.1.1 we introduced a notion of parallel transport for the case of a

single state ∣uλ⟩ for discretized λ. Taken over to the case of a single band

transported along a path in k-space in the BZ of a 3D crystal, in which the

phase of the first state ∣ūnk0⟩ has already been chosen, the procedure was

to choose the phase of the next state ∣ūnk1⟩ such that ⟨ūnk0 ∣ūnk1⟩ is real

and positive, and then similarly for ⟨ūnk1 ∣ūnk2⟩ and all subsequent points.

The criterion that ⟨ūnkj ∣ūnkj+1⟩ should be real and positive is equivalent to

requiring that this inner product should be as close to unity as possible,

intuitively corresponding to a notion of “optimal alignment” of the states.

In the case that this string of points is a closed loop, the physical states must

be identical at the final and initial points, but the phases do not necessarily

match. Translating Eq. (3.21) to this context, the Berry phase of the loop
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is then just the phase mismatch

φn = −Im ln ⟨ψ̄nkN ∣ψ̄nk0⟩ = −Im ln ⟨ūnkN ∣e−ibµ⋅r∣ūnk0⟩ , (3.100)

where the e−ibµ⋅r factor is needed only if the loop winds around the BZ by

a primitive reciprocal lattice vector bµ.

To generalize this to the multiband case, imagine that we start with a set

of J orthonormal states ∣ūnk0⟩ (n = 1, ..., J); these could be the cell-periodic

energy-band states themselves at k0, or some unitarily mixed combination

of them. We then want to carry out a J × J unitary transformation on the

states ∣unk1⟩ to get new states ∣ūnk1⟩ having “optimal alignment” with those

at k0. This means that the matrix

M̄ (k0,k1)
mn = ⟨ūmk0 ∣ūnk1⟩ (3.101)

should be as close to the unit matrix as possible.

To accomplish this, we first construct the overlap matrix

M (k0,k1)
mn = ⟨ūmk0 ∣unk1⟩ (3.102)

between the chosen states at k0 and the initial states at k1. We then subject

M (k0,k1) to a singular-value decomposition (SVD)

M (k0,k1) = V ΣW � (3.103)

where V and W are J × J unitary matrices, and Σmn = sn δmn is a diagonal

matrix whose elements, the “singular values” sn, are all real and positive.

The SVD is a standard operation that is implemented in virtually all linear

algebra software packages. Since we are considering the overlap of states at

two nearby points along the path, there should be some choice of unitary

rotations that would make the states very similar, so that we can expect

all the eigevalues sn to be close to unity.26 We then construct the unitary

matrix

M
(k0,k1) = VW � (3.104)

which can be regarded as the best unitary approximation to M (k0,k1), i.e.,

the unitary matrix that tells us approximately how the states at k0 got

rotated in going to k1. To undo this rotation, we let the new states at k1 be

∣ūnk1⟩ = ∑
m

(M
�
)mn∣umk1⟩ . (3.105)

Note that if we now construct the overlap matrix via Eq. (3.101) the result

is M̄ = V ΣV �. This is a Hermitian matrix with near-unit eigenvalues, i.e.,

26 All the sn must be ≤ 1, since two nomalized vectors can never have an inner product that
exeeds unity.
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nearly the identity matrix. The ∣ūnk1⟩ can thus be regarded as the states

that are “maximally aligned” to the ∣ūnk0⟩. Repeating the same procedure

to chose states ∣ūnk2⟩ that are optimally aligned with the ∣ūnk1⟩, and so on,

provides a parallel-transport gauge ∣ūnk0⟩, ..., ∣ūnkN ⟩ for the states along the

chain.

As an aside, recall that in Sec. 3.6.1 we encountered the problem of con-

structing a smooth gauge in the vicinity of some reference point k0, as for

example for the four valence bands at Γ in Si. We can now give a simple pre-

scription for doing so. At k0, make some arbitrary choice of J orthonormal

functions spanning the band subspace there; for Si we can choose the lowest-

energy state as j = 1, and then arbitrarily pick three orthonormal states to

represent the next three degenerate states at the valence band maximum.

Then for each nearby k, calculate M
(k0,k)
mn = ⟨umk0 ∣unk⟩, obtain the SVD,

and rotate the states at k according to Eq. (3.105). This insures maximal

alignment of the states at each point in the neighboring region to the states

at k0, and consequently generates a smooth manifold in this region.

Let us return to the case of a chain of N k-points along a path, but sup-

pose, as in Sec. 3.1.1, that the path is a loop such that k0 and kN represent

the same Hamiltonian. After the sequential parallel-transport procedure is

applied around this loop, the states at kN will have acquired an overall

global unitary rotation characterized by the unitary matrix

Umn = ⟨umkN ∣unk0⟩ , (3.106)

where U is a J × J unitary matrix.27 We now define the total Berry phase

associated with this path to be

φtot = −Im ln det U . (3.107)

Equations (3.106) and (3.107) constitute the multiband generalization of

Eq. (3.8).

We can do more and extract a set of individual Berry phases associated

with the multiband parallel transport. Since U is unitary, its eigenvalues λm
are unimodular, i.e., λm = e−iφm for real φm. Thus, Eq. (3.107) can also be

written as

φtot = −Im ln
J

∏
m=1

λm = −
J

∑
m=1

Im lnλm =
J

∑
m=1

φm . (3.108)

The individual phases φm are known as “multiband Berry phases” or “Wil-

27 If the path involves a winding by reciprocal lattice vector bµ, then as in Eq. (3.100), a factor

of of e−ibµ ⋅r has to be inserted into the inner product in Eq. (3.106).
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son loop eigenvalues” (Wilson, 1974), and correspond to the multiband gen-

eralization of the single-band Berry phase of Eq. (3.8).

One way to attach a meaning to these multiband Berry phases is to con-

sider what happens if we use the eigenvectors of U to rotate the states ∣unk0⟩

into new states ∣ũmk0⟩, and then use these as the starting point for the

parallel-transport gauge construction. Then the matrix Ũ obtained at the

end of this construction will be diagonal, with the diagonal elements being

just the e−iφm . That is, each state ∣ũmk⟩ will return precisely to itself at the

end of the loop, having acquired the Berry phase φm.

Note that we can also determine the total Berry phase φ, or the individ-

ual multiband Berry phases φj , without explicitly constructing the parallel-

transport gauge at all. We start with states the ∣unk0⟩, ..., ∣unkN−1
⟩ in any

arbitrary gauge, and for each neighboring pair of points, construct the over-

lap matrix M
(kj ,kj+1)
mn = ⟨umkj ∣unkj+1⟩. We then replace each M (kj ,kj+1) by

its unitary approximation M(kj ,kj+1) as given by Eq. (3.104), and compute

the product U = ∏
N−1
j=0 M

(kj ,kj+1). This is easily shown to be identical to the

U of Eq. (3.106), and the φj are extracted from its eigenvalues as above.

The total Berry phase is just the sum of these eigenvalues, and can also be

written as

φtot = −Im ln det
N−1

∏
j=0

M
(kj ,kj+1) . (3.109)

Often φtot is approximated in practice by

φtot = −Im ln det
N−1

∏
j=0

M (kj ,kj+1) (3.110)

since this gives the same result in the limit of increasing mesh density and

is easier to calculate in practice.

In the case of a 1D multiband system in which the path winds around

the BZ, one can establish a more provocative interpretation of the φm in

terms of Wannier centers. Recall that in the single-band case discussed in

Sec. 3.5.1, we saw that the position of the Wannier center in the unit cell is

just proportional to the single-band Berry phase as expressed via Eq. (3.84).

This connection generalizes to the multiband case, where it turns out that

in 1D the charge centers of the MLWFs are again given in terms of the

multiband Berry phases by an identical equation,

x̄m = a
φm
2π

. (3.111)

The only difference is that these Wannier functions no longer have a one-to-
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one relation to individual energy bands, but are extracted from the entire

set of bands treated as a group. The demonstration of Eq. (3.111) is given

in Sec. IV.C.1 of Marzari and Vanderbilt (1997).

3.6.3 Multiband Berry potentials and curvatures

The discussion above has motivated the idea that an isolated set of J adja-

cent bands can profitably be treated as a unified group. We have already seen

how the concept of the Berry phase can be generalized to this case. In fact,

the entire formalism of Berry potentials and curvatures introduced earlier

in this chapter can be generalized to the multiband case, where objects that

were previously scalars and now replaced by J × J matrices. The resulting

formalism is often referred to as nonabelian because matrices generally do

not commute. The formalism can be developed in any space of parameters

λj as in the early parts of this chapter, but here we shall use the notation of

Bloch states of a 3D crystal for consistency with the preceding discussion. In

subsequent chapters, we will often assume isolated bands for simplicity, so

that it is possible to skim or omit this subsection on a first reading. In any

practical implementation, however, the use of methods that treat groups of

occupied bands as a whole are highly advantageous.

We assume that some definite choice has been made for the cell-periodic

Bloch-like states ∣unk⟩ such that these are smooth functions of k that are

unitarily related to the true (energy-eigenstate) Bloch functions of the band

group in question. You can imagine that these are the result of some smooth-

ing procedure as discussed above. Then the multiband Berry potential and

curvature are defined as

Amn,µ(k) = ⟨umk∣i∂µunk⟩ (3.112)

and

Ωmn,µν(k) = ∂µAmn,ν(k) − ∂νAmn,µ(k)

= i⟨∂µumk∣∂νunk⟩ − i⟨∂νumk∣∂µunk⟩ (3.113)

As before, we sometimes hide the Cartesian indices by writing these as

vectors Amn and pseudovectors Ωmn.

It is also useful to define the matrix traces

Atr
µ (k) = ∑

n

Ann,µ(k) (3.114)

and

Ωtr
µν(k) = ∑

n

Ωnn,µν(k) (3.115)
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where the sum is over the J bands in the group. These traced quantities

behave very much like the single-band Berry quantities of Sec. 3.4. In par-

ticular, for any closed path C in k-space we can define a total Berry phase

φtot = ∮
C

Atr
(k) ⋅ dk = ∫

S
Ωtr

(k) ⋅ dS (3.116)

which precisely corresponds to the discretized total Berry phase of Eqs. (3.107-

3.108). In the second form above, Stokes’ theorem has been invoked to con-

vert the line integral into a surface integral over a patch of surface S whose

boundary is C. In the special case that the individual bands are nowhere

degenerate and the ∣unk⟩ are Bloch energy eigenstates, we can identify the

diagonal matrix elements Annµ and Ωnn,µν in the current notation with Anµ
and Ωn,µν of Sec. 3.4, and the total Berry phase φtot around a closed path

is just the sum ∑n φn of the individual-band Berry phases.

Let us see how these Berry connection and curvature matrices transform

under a multiband gauge change, Eq. (3.96), which we now write as

∣ũnk⟩ = ∑
m

Umn ∣umk⟩ . (3.117)

(We have dropped the explicit k-dependence of Umn and it is understood

that all sums are over the J states.) Any J-component vector that transforms

according to Eq. (3.117) is denoted as a “gauge-covariant vector.” A matrix

Omn = ⟨umk∣Ô∣unk⟩ (3.118)

constructed from matrix elements of an ordinary single-particle operator

Ô is also referred to as “gauge covariant,” in which case we mean that it

transforms as

Õmn = (U �
OU)mn , (3.119)

where J × J matrix products are implied on the right-hand side. This is

easily checked by inserting Eq. (3.117) into Õmn = ⟨ũmk∣Ô∣ũnk⟩.

Unfortunately, the vector

∣∂µũnk⟩ = ∑
m

Umn ∣∂µumk⟩ +∑
m

(∂µUmn) ∣umk⟩ (3.120)

is not gauge-covariant, in view of the appearance of the second term above.

By the same token, the Berry potential matrix

Ãµ,mn = (U �AµU)mn + (U �i∂µU)mn (3.121)

is not gauge-covariant, again because of the extra term on the right. A similar

extra term appears in the transformed Berry curvature tensor Ω̃µν,mn. For

some purposes this is inconvenient. For example, any physical observable



3.6 Multiband formulation 111

should be gauge-invariant, and it turns out to be easy to construct invariants

out of gauge-covariant matrices.28 We should not be surprised that the Berry

potential is not gauge-covariant, since neither was it gauge-invariant in the

single-band case. However, the Berry curvature was gauge-invariant in the

single-band case, and it is unsatisfactory that we have lost the corresponding

property here.

This can be repaired as follows. First, at each k define the projection

operator onto the group of bands

Pk = ∑
n

∣unk⟩⟨unk∣ (3.122)

where the sum is over states in the group, and its complement Qk = 1 −

Pk. (In the case that the group is the full set of occupied states of an

insulator, Pk and Qk are just the projections onto valence and conduction

states respectively.) Then we can define a “gauge-covariant derivative” of

∣unk⟩ as

∣∂̌µunk⟩ = Qk ∣∂µunk⟩ (3.123)

which deserves this name because it satisfies

∣∂̌µũnk⟩ = ∑
m

Umn ∣∂̌µumk⟩ (3.124)

since the Qk term yields zero when acting on the ∣umk⟩ in the last term

of Eq. (3.120). There is no such thing as a gauge-covariant Berry connec-

tion tensor, since ⟨unk∣∂̌µumk⟩ vanishes, but we can define a gauge-covariant

Berry curvature tensor

Ω̌mn,µν = i⟨∂̌µumk∣∂̌νunk⟩ − i⟨∂̌νumk∣∂̌µunk⟩

= i⟨∂µumk∣Qk∣∂νunk⟩ − i⟨∂νumk∣Qk∣∂µunk⟩ (3.125)

satisfying an equation like Eq. (3.119). We can write this covariant curvature

more concisely using

∣∂̌µunk⟩ = ∣∂µunk⟩ −∑
m

∣umk⟩ ⟨umk∣∂µunk⟩

= ∣∂µunk⟩ + i∑
m

Amn,µ ∣umk⟩ . (3.126)

from which it follows that

Ω̌mn,µν = Ωmn,µν − i[Aµ,Aν]mn (3.127)

28 For example, the trace of any gauge-covariant matrix is automatically gauge-invariant. More
generally, if A1 ... AM are gauge-covariant matrices, then the trace of their product is
gauge-invariant.
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Note that the band-index traces of Ω̌µν and Ωµν are identical, with both

yielding Eq. (3.115), since the trace of the commutator appearing in Eq. (3.127)

vanishes.

Exercises

Exercise 3.6.1 We want to show that the vector sum r̄tot of Wannier

centers in Eq. (3.98) is gauge-invariant, modulo a lattice vector, under

a multiband gauge transformation as in Eq. (3.96).

(a) Starting from Eq. (3.121), show that the traced Berry potential of

Eq. (3.114) transforms as

Tr [Ãµ(k)] = Tr [Aµ(k)] +Tr [U �
(k)i∂µU(k)] .

(b) Show that this can be rewritten as

Tr [Ãµ] = Tr [Aµ] + ∂µβ

where β(k) = −Im ln detU(k). Note the similarity with Eq. (3.60).

Hint: Recall that a trace can be evaluated in any representation. Here

it is convenient to use the one that diagonalizes U(k); that is, assume

U(k) = V (k)B(k)V �(k) where V is unitary and B is unimodular di-

agonal, Bmn = e
−iβnδmn for real βn.

(c) Assuming that a global branch choice has been made for β(k) such

that it is smooth and periodic over the 3D BZ, prove the invariance

of r̄tot, starting from Eq. (3.83). (For this part and the next, you can

assume an orthorhombic a×b×c unit cell and let µ=x.)

(d) The gauge transformation in (c) is multiband “progressive” in the

sense of the discussion on p. 98. It is also possible for β(k) to increase

by 2πnj as k→ k+bj , where nj is an integer associated with primitive

reciprocal lattice vector bj , and still be consistent with a U(k) that is

smooth and periodic over the 3D BZ. In this case of a “radical” gauge

transformation, show that r̄tot shifts by a lattice vector.


