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Phonons – Thermal properties 

Till now everything was classical – no quantization, no uncertainty.... 

WHY DO WE NEED QUANTUM THEORY OF LATTICE VIBRATIONS? 

Classical – Dulong Petit law 

All energy values are allowed – classical equipartition theorem – energy per degree of 

freedom is 1/2kBT.  

 Total energy                

  
  

  
        independent of temperature!  Detailed calculation gives C = 3NkB 

In reality  C ~ aT +bT
3 

 

Figure 1: Heat capacity of gold 

Need quantum theory! 

Quantum theory of lattice vibrations: 

Hamiltonian for 1D linear chain     
  
 

                         

Interaction energy is simple harmonic type ~ ½ kx
2
 

Solve it for N coupled harmonic oscillators – 3N normal modes – each with a characteristic 

frequency       where p is the polarization/branch.  

Energy of any given mode is           
 

 
                      

           is the zero-point energy 

     is called ‘excitation number’ of the particular mode of p
th

 branch with wavevector 

k   
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Phonons are quanta of ionic displacement field that describes classical sound wave. Analogy 

with black body radiation - ni is the number of photons of the i
th

 mode of oscillations of the 

EM wave. 

Total energy of the system E =              
 

 
          

     
 

          
  is the ‘Planck distribution’ of the occupation number. 

Planck distribution: 

Consider an ensemble of identical oscillators at temperature T in thermal equilibrium.  

Ratio of number of oscillators in (n+1)
th

 state to the number of them in n
th

 state is 

    

  
        

So, the average occupation number <n> is: 

     
      

 

     
 

   
          

 
 
 

 

         
 
 
 

 

 

      
          

   
  

       
   

   
 

  
        

 

       
 

 
    

 

   
 

         

      

 
      

 
   

 
 

   
 

 

     
 

 

      
 

Special case of Bose-Einstein distribution with =0, chemical potential is zero since we do 

not directly control the total number of phonons (unlike the number of helium atoms is a bath 

– BE distribution or electrons in a solid –FE distribution), it is determined by the temperature. 

Total energy of the system E = 

    

  

       
 

 
       

  

    
      

          
 

 

 
       

  

 

Specific heat    
  

  
  

 

  
  

      

          
    

 General expression; actual values will depend upon frequency spectrum of the normal 

modes. 

High temperature limit: 
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Writing         as just   for brevity: 

   
  

  
  

 

  
  

  

      
 

  

 

Replace       
  

   
   

 

    
 

 

  
  

  
  

   
 

 

 
 

 

  
 
  

  

   
  

 

 
   

 

 
 

  

  
   

     
  

      
 

         

  
 

 
  

  

 

     
  

   
    

   

 
 

      

  
   

         

  
 

 
  

  

 

         
  

    
 

 

  
 
  

   
 
 

   

         

  
 

 
  

  

 

   
  

  
       

  

  
 
  

   
 
 

   

         

 

To first order;                     ; Dulong Petit law; the other terms ignored in the 

expansion give the correction to the above result.  

Low temperature limit: 

Make certain assumptions: 

1. Replace the summation by an integral over the first Brillouin zone – justified since N 

is very large, spacing between allowed values of k is very small and the summand 

does not vary much between two consecutive points.  

   
  

  
  

 

  
 

  

     
 

   

       
 

 

 

2. Modes with high frequency        will make negligible contribution to the 

integral as these terms die our exponentially – so can completely ignore the optical 

branches. 

3. Replaced the acoustic branch with        ; valid provided the frequency at which 

the dispersion deviates from linearity is large compared to the temperature. 
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4. Extend the limit of integral to all k-space – anyway integrand is negligible 

everywhere except near    . 

 

    
 

  
 

 
  

     
 

   

       
 

 

 

 

    
 

  
 

 
    

     
 

   

       
 

 

 

   

       

   
 

  
 

 

   

      

     
    

  

    
 

 

 

  

 

The factor 3 is for the three acoustic modes. 

 

   
 

  
 

 

   

      

     
 
   

  
     

    

 

      

     
     

 

This result matches to that obtained experimentally for alkali halides to within 1%!! 

 

Specific heat in intermediate temperature range:  There is no simple general theory, two good 

models exist; Debye model and Einstein model. 

 

Debye model: 

 

Assumptions: 

 

1. Replace all branches of the dispersion by a linear spectrum;        . 

2. Carry out the integration over a sphere of area equal to the area of the Brillouin zones. 
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Figure 2: Normal 

spectrum 

 

Figure 3: Spectrum in 

extended zone scheme 

 

Figure 4: Linearized 

spectrum 

 

Figure 5:Debye 

wavevector 

Calculate the specific heat: 

   
 

  
   

  

     
 

   

       
 

  

 

 

   
 

  
 

     

     
 

   

       
   

  

 

 

   
   

   

 

  
  

  

       
   

  

 

 

   
   

   

  

    
 

       

          
  

  

 

 

 

Replace        in the equation and define Debye temperature    
    

  
.  

  

   
   

   

  

    
  
   

  
 
 

 
    

       
  

    

 

 

   
   

   
  
   

  
 
 

 
    

       
  

    

 

 

 

         
 

  
 
 

 
    

       
  

    

 

 

    

 

At temperatures high compared to TD;         - Dulong Petit result 

At temperatures low compared to TD;    
    

 
     

 

  
 
 

          
 

  
 
 

 

TD plays the same role for phonons as TF plays for electrons; it divides the high temperature 

classical regime from the low temperature Quantum regime.  

In the case of electrons, TF ~ 10
4
 K so only quantum regime is encountered. For phonons TD 

~ 100-1000K, so both classical and quantum behaviour can be seen.  

 

Einstein model: 

Einstein model differs from Debye model essentially in the way it treats the Optical modes. 
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Figure 6: Normal dispersion 

 

Figure 7: Replace by Debye sphere 

 

Figure 8: Linearize the dispersion 

 

Assumptions: 

1. The acoustic modes all have a linear dispersion relation. 

2. The optical modes have a constant frequency    independent of k (remember the case 

     ). 

Acoustic mode contribution to the specific heat remains unchanged.  

Optical mode energy    
   

       
 ; assuming same dispersion for all three modes. 

Specific heat due to Optical modes is         
   

   
 
      

         
  

At temperatures high compared to    ;         - Dulong Petit result 

At temperatures low compared to   ;    dies off exponentially as it is difficult to excite 

high energy modes at low temperatures. 

Comparison between electronic and lattice specific heats: 

Lattice specific heat:   
    

    

 
      

 

  
 
 

     is the number of ions 

Electronic specific heat:   
     

  

 
     

 

  
         is the number of ions; Z is valence 

  
    

  
     

 

    
   

  
 

    
 

They will be equal at a temperature T0 where  

 

    
   

  
 

  
   

   

     
  

    
   

  

  
          

TD ~ 300K while TF ~ 10
4
K.  
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Linear term (electronic contribution) in specific heat is seen only at very low temperatures, 

above that the cubic term (phonon contribution) begins to dominate. 

Total specific heat of a crystal: 

    
       

   
 

  

 
     

 

  
  

    

 
      

 

  
 
 

         

Writing C=aT+bT
3
; C/T = a+bT

2 

   
  

 
     

 

  
  and    

    

 
      

 

  
 
 

 

Thus in a plot of C/T as a function of T
2
, the intercept ‘a’ on the y-axis gives the value of the 

Fermi temperature (or equivalently Fermi energy) while the slope of the curve ‘b’ is a 

measure of the Debye temperature.    

Anharhominicity in Phonons 

Discussion till now confined to harmonic approximation – potential energy of lattice 

vibrations had only quadratic terms.  We learnt that the lattice waves are normal modes – 

phonons do not interact with each other; they do not change with time.  Its consequences are: 

1. The heat capacity becomes T independent for T>TD. 

2. There is no thermal expansion of solids. 

3. Thermal conductivity of solids is infinite 

Conditions not   fulfilled in real crystals.  

Way out: Include higher order terms in potential energy. 

                                       with c,g and f >0 

This is equivalent to having three or more phonon processes in the Hamiltonian. They can 

lead to processes like: 

 

Figure 9: Linear and cubic term in specific heat 
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The coefficients g and f are related to the probabilities for having these third order and fourth 

order processes respectively. 

Thermal expansion 

Consider the potential energy in terms of the relative displacement x between two ions form 

their equilibrium position: 

                                       with c,g and f >0 

Average displacement of the ions is: 

    
                 

  

  

               
  

  

 

For small displacements such that Uanharm/kBT<<0, we can expand the exponential as: 

Numerator: 

                                   
     

     

             
                          

             

  
     

 

 

    
      

Denominator: 

                                 
     

     
           

                

          
   

 

 
 
   

      

So, 

      
  

   
    

Note that the thermal expansion does not involve the symmetric term x
4
 but only the 

asymmetric cubic term. 
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Figure 10:Phonon wavefunctions for (Left) harmonic potential (Right) anharmonic potential 

The origin of anharmonicity is explained in Figure 10. Left figure- phonon wavefunctions 

when the potential is harmonic: the average displacement <x> is zero for all modes. Right 

figure: the same wavefunctions when the potential in anharmonic: the average displacement 

increases with phonon energy. Therefore anharmonicity 

Dependence of thermal expansion co-efficient on specific heat: 

Helmholtz fee energy is defined as: 

       

It is related to pressure as:              

From TdS = dU + pdV we get 

                    

So, 

   
 

  
         

 

  
     

   

  

 

 

 
 

   
                  

From calculations based on harmonic approximation: 

   
      

          
   

 
 

 
                

   

 

Combining (1) and (2);  

    
 

  
 
 

 
       

   

      
 

  
         

   

 
 

          
 

The first term (only term at zero energy) is the volume derivative of the ground state energy. 

The second term is the volume derivative of the phonon energies.  

If harmonic approximation is rigidly correct then the second term vanishes, P does not 

depend on T at all!! 

So,   
  

  
 
 
     

        

        
    implying the co-efficient of linear expansion  
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The co-efficient of thermal expansion for a harmonic lattice is zero!! 

Here       
  

  
 
 
  is the bulk modulus. 

Many other thermodynamic anomalies: 

1.         
 

 

        
 

        
      ; implying the specific heats at constant pressure and 

constant volume are identical. 

2. 
        

        
   

  

  
  ; implying the adiabatic and isothermal compressibilities are 

identical.  

Both these go against experimental results.  

As a first order correction, assume that the energy for the anharmonic potential is the same as 

that we got for the harmonic potential approximation, only now the normal modes depend on 

the volume of the crystal.  

   
 

  
  
  

  
 
 
 

 

  
    

 

  
         

   

 
 

  
 

 

          
       

Compare with the expression for lattice specific heat per unit volume: 

  
      

 

 

 

  
  

      

          
 

   

   
      

 
 

   

 
 

  

 

          
       

Therefore  

   
  

   

  
 
   

 
  

            

  
      

     

       

For simple dispersion relations like Debye model, we can make further simplifications;  

Define a parameter called Gruneisen parameter: 
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Electrical contribution to the thermal expansion co-efficient: 

For electrons the internal energy is related to the pressure by: 

  
  

  
 

    
 

  
  
  

  
 
 
  

 

  

 

  
  
  

  
 
 
  

 

  
  

   

So, net thermal expansion co-efficient is: 

             
   

   

  
 

 

  
  

   
 

  
    

    
 

 
  

          

 

~ 1-2, so the electronic term will make significant contribution only when electronic 

specific heat is large as compared to the lattice specific heat i.e. at temperatures below 10K. 

In metals  vanishes linearly with temperature (dominated by 
el
) while in insulators it 

vanishes as T
3
 (determined by 

ion
) – these have been experimentally verified. 

 

 

Figure 11: Temperature dependence of the (a,b) lattice 

constants, (c) the c/a ratio and (d) the unit cell volume in 

YbGaGe.  Solid lines are fits to Debye model. Ref: G. K. 

White Proc. Roy. Soc. London, A286, 204 (1964). 

 

Figure 12: (a) Temperature dependence of thermal-expansion 

coefficient  in YbGaGe (b) Temperature dependence of the 

heat capacity (open symbols) together with the fitting results 

(solid line) using Debye phonons with the cut off energy of  

TD =260K  (dotted line);  Einstein phonons centered at  TE = 

80K (dashed line) on top of the electronic contribution (dash-

dotted line)  (c) Temperature dependence of Grüneisen 

parameter. Ref: G. K. White Proc. Roy. Soc. London, A286, 

204 (1964). 
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Thermal conductivity 

Without collisions there will be no thermal equilibrium, thermal conductivity will be infinite. 

For harmonic crystal, there is no collision between phonons; only factors limiting the thermal 

conductivity are geometrical scattering of phonons by the boundary of the crystal and defects 

in the crystal. 

In ordinary gas two particle collision lead to equilibrium, so how does phonon ‘gas’ differ 

from the ordinary gas of molecules? 

The main difference is that phonon number need not be conserved – so the analogue of 

phonon gas is not molecules confined in a vessel (see fig. 4) but rather molecules flowing 

freely through a tube carrying heat across it without any temperature gradient (see fig. 5). 

 

Figure 13: Gas flow in a closed tube:  no mass flow permitted - energy transported from left to right with no thermal 

gradient - finite thermal conductivity. 

 

Figure 14: Gas flow in open tube:  energy transported from left to right with no thermal gradient; thermal 

conductivity infinite 

 Consider a rod with the two ends maintained at different temperatures. Thermal conductivity 

 is defined as the energy transmitted per unit time across unit area per unit temperature 

gradient. 

    
  

  
 

Dependence of on dT/dx implies that the thermal energy transfer is a random process 

involving scattering – introduces mean free path of phonons in the problem.  If the process 

was ballistic, it would involve only dT between the two ends and not the gradient.  

We make a relaxation time kind of approximation: the energy contributed by a phonon at a 

point is decided by where it has had its last collision. So phonons coming from the high 

temperature end bring more energy than those coming from the low temperature end.  Thus, 

although there is no net number flux, there can be energy flux travelling from the high T end 

to the low T end.  

Temperature at two ends of a one dimensional rod are (T+T) and T.  The temperature at 

point x is T(x) and the energy at that point is E(T[x]). Half the phonons arriving at a point x 



PH-208 Phonons – Thermal properties Page 13 
 

 

are from the high temperature side each carrying an energy E(T[x- vx]), the other half are 

from the low-T side and carry an energy E(T[x+vx]). Number of phonons arriving at x per 

unit time per unit area of cross section is 1/2 n vx, where vx is the phonon speed in x direction. 

So net energy flux is: 

  
 

 
                                 

  
  

  
  

  

  
   

 

 
     

  

  
 

  
 

 
   

   
 

 
      

 

 
   

         

  

Lattice thermal conductivity of a crystal is determined by two contributions – specific heat 

and the mean free path of phonons.   

Mean free path of phonons is determined two factors: (a) rate of scattering with other 

phonons and (b) scattering with static impurities or boundaries of the crystal. Scattering form 

other phonons can be classified into two types depending on the energies involved: 

 

Figure 15: (left figure) N-process and (right figure) U-process in phonon scattering 

N-process: Consider a three-phonon scattering process. If the initial energies of the phonons 

involved in the process is small as compared to     then (since energy is conserved in the 

process) the final energies of the phonons will also be small as compared to    . Thus all 

the wave-vectors involved in the process will small as compared to the reciprocal wave-

vector (which is of the same order as the Debye wave-vector). So, in the equation; 

            

the reciprocal lattice vector G is identically zero; crystal momentum is exactly conserved in 

the process. This is called a normal process or an N-process. Such processes cannot change 

the crystal momentum.  In equilibrium the net crystal momentum 

        

   

  
  

          
   

   

Thus if we start with a non-equilibrium phonon distribution, N-processes cannot bring about 

thermal equilibrium – it can be shown that if there were only N-processes the thermal 

conductivity of a crystal would have been infinite. 
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Analogous to the flow of gas in a cylinder with open ends – thermal energy is transported 

from one end to another without a thermal gradient. 

U-process (Umklapp process): For scattering events where the initial phonon momenta are 

not small as compared to kD; the value of the reciprocal lattice vector required to bring back 

the final phonon state into the first Brillouin zone will be non-zero. Hence for such scattering 

events crystal momentum is conserved only to within a reciprocal lattice vector and this gives 

finite thermal resistance to the crystal.    

How does the phonon mean free path depend on temperature?  

High temperature limit (T/TD >>1): The probability that a phonon will suffer a collision is 

directly proportional to the number of other phonons present. At high T, the equilibrium 

number of phonons is:  

     
 

      
  

   

  
  

So the mean free path should go as 1/T. Since CV is constant in this temperature range, the 

entire temperature dependence of  comes from temperature dependence of l.  Thus, 

  

        

Low temperature limit (T/TD <<1): Thermal conductivity of a perfect infinite crystal is finite 

at low temperatures only because of U-processes. For U-process at least one of the initial 

phonons must have energy comparable to    . At T/TD <<1, the number of such phonons is  

     
 

      
  

 

       
          

As T decreases, the number of phonons that can take part in U-process falls exponentially. 

Thermal conductivity is inversely proportional to the number of U-processes, so the effective 

relaxation time for thermal scattering goes as: 

         

Thus as T decreases,  shows an exponential increase till the mean free path becomes 

comparable to that due to scattering from static imperfections/boundary of the crystal. Below 

this temperature, l becomes T independent and  is determined solely by the temperature 

dependence of specific heat. 

So, at very low temperatures, thermal conductivity will be determined by Cv and will go as 

T
3
. As temperature increases, U-processes begin to appear and will gradually make the mean 

free path smaller than the sample dimensions. Thermal conductivity at this point reach a 

maximum and then begin to fall exponentially with temperature as       . At higher 
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temperatures, the exponential fall is replaced by a slower 1/T power law fall of  with 

increasing T.  

 

Figure 16: Thermal conductivity of  LiF; Mean crystal 

widths: (A) 7.25 mm, (B) 4.00 mm, (C) 2.14 mm, (D) 1.06 

mm. Ref: P. D. Thacher  Phys. Rev. 156, 975–988 (1967). 

 

Figure 17: Low-temperature thermal conductivity K divided by 

T3 and plotted against mean crystal width. Ref: P. D. Thacher 

Phys. Rev. 156, 975–988 (1967). 

 

Phonons – measuring dispersion relations 

By either neutron scattering or EM wave scattering. 

For neutrons: E=p
2
/2m; For phonons: E=pc. 

Focus on neutron scattering: 

They are charge neutral and interact only with the ion core. The interaction with electrons is 

only through weak magnetic coupling of their magnetic moment with that of the electrons. 

Neutrons incident with energy    
  

  
 - interact with the lattice -emerge with energy     

   

  
 

Initial phonon number    , final phonon number      

From energy conservation: 

                             

                                           

From momentum conservation: 

                           

Zero phonon scattering process n=0: 
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This is the Laue condition for reflection of a plane wave incident on the crystal – no new 

information. 

 One phonon scattering process      : 

Consider the case where one phonon is absorbed,      

              

                   

  

  

 
  

  

  
      

          

 
 

    

 
   

  

  
      

          

 
  

since    is a periodic function in G. 

    is known. Measure the number of neutrons emerging in a specific direction with a specific 

momentum, so                   and            can be calculated.  

Tells us that the crystal has a normal mode of   frequency             and wavevector 

          - can map out the entire phonon spectrum this way. 

Two phonon scattering process      : 

          
        

     

                          

Too many unknowns, many possible solution – forms the background of the spectrum. So 

discrete peaks in the scattering spectrum can be seen only for one-phonon processes; multi-

phonon scattering events give a continuous distribution of energies in any direction.  

 

Figure 18: Neutron scattering 

The one-phonon scattering peaks have a finite width. This is due to the fact that the harmonic 

analysis is only an approximation; phonons have a finite lifetime. If the crystal is in some 

state at a given time, it will evolve to some other state over time as the phonons are not the 

steady state solutions of the exact Hamiltonian but only an approximate one.   The finite 

lifetime gives an energy uncertainty      in the peak positions. 


