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NORMAL MODES 

Failures of static Lattice model 

Recap- Start with Drude and Sommerfeld models 

DRUDE MODEL - Classical theory (Maxwell-Boltzmann distribution)  

Can explain Wiedemann-Franz law (in high T and low T regimes) 

Fails everywhere else. 

 Cv= 3/2kBT 

 Electrical resistance = 0 

 Thermal expansion – no clue. 

 

SOMMERFELD MODEL – Used Fermi Dirac distribution 

Triumphs –  

 Cv ~ T (valid at low temperatures for alkali metals) – got even the magnitude right 

Failures –  

 Hall coefficient RH = -1/ne (in reality depends on B, T, scattering time) – sign for Al is wrong 

 

 At intermediate T, Wiedemann Franz law is T dependent 

  T
3
 term in specific heat 

 

Ad-hoc points in the theory:  

 How to determine the number of free electrons in the system? 

 No free electrons in insulator – so no degree of freedom to have any physical effect! 

 T
3
 term in specific heat for both metals and insulators – something common between them! 

 What is # electrons for transition metals (Fe, Mn, V) that show multiple valence? 

 C as diamond is insulator but good conductor as graphite - # free electrons same????? 

 B insulator while Al good conductor (same column of periodic table)!!!!! 

Why did Drude and Sommerfeld models fail? – go back and review basic assumptions. 

1. Independent electron model – Good enough in most cases due to FD statistics – only case 

where relaxing it helps is calculating compressibilties of metals. Relaxing this condition gives 

Hartree- Fock equation; screening of electrons (very important); Fermi liquid theory. 
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2. Relaxation time approximation – (Outcome of collision does not depend on local electron 

concentration) –Wiedemann-Franz law at intermediate temperatures can be explained if we 

invoke this. Relax this condition – you have to consider different sources of scattering, two 

main ones are – intrinsic defects and lattice vibrations- leads to Boltzmann transport equation 

(will cover it if we have time) 

 

3. Free electron approximation -   Main culprit – only scattering from static rigid ions, no 

electric/magnetic effect of ions on electron dynamics. 

 

 Ions have no effect on electronic motion in between collisions (ions positive electron 

negative!!)   (NON COLLISIONAL EFFECT).... main culprit 

 What do we mean by collision?? (COLLISIONAL EFFECT) 

 Ions are dynamical entities – can contribute independently to specific heat, thermal 

conductivity etc. 

 

Relax the free electron approx in two stages: 

- Electrons move in a static periodic lattice – very important (distinguishes crystalline materials 

from liquid and even amorphous solids) – static lattice model 

- Electrons move in a dynamic non-static lattice   

 

STATIC LATTICE MODEL: 

Electrons move in a constant rigid periodic background potential – not scattered by it except for 

specific k values at Brillouin zone boundaries – form standing waves – gaps at electronic spectrum – 

used to explain x-ray spectrum, equilibrium and transport properties of metals and insulators that are 

dominated by electrons.  

Why is static lattice model unrealistic?  

1. Ions are not infinitely massive – not held by infinite forces – must move about at finite T 

because of kinetic energy 

2. Quantum zero point mean square momentum even at zero T – uncertainty principle.... so large 

in He that it is called Quantum Fluid. 

Where does static lattice model fail?   

1. Equilibrium properties – Specific heat of metals (T
3
 term above 10K and constant above 

Debye temperatures). Specific heat of insulators (# excited electrons ~ exp(-Eg/2kT) so 

C~du/dt also exponential in T; experimentally C~ T
3
). Thermal expansion; Melting of solids. 

2.  Transport properties – Static periodic crystal has infinite conductivity – main resistance 

comes from scattering from lattice vibrations (R~ T
5
 at low T and R~T at high T); 

Superconductivity (lattice vibration mediated attractive interaction between two electrons); 

Thermal conduction in insulators (not so good as metals but substantial); Transmission of 

sound in insulators. 

3. Interaction with radiation – Reflectivity of ionic crystals ( show a maximum at frequency 

far below the gap – because E field exerts force on +ve and –ve ions, displace them); Inelastic 

scattering of light (Raman scattering and Brillouin scattering); X-ray scattering( Amplitude of 

Bragg peaks diminished by lattice vibration).     

 

PHONONS – NORMAL MODES I 

Relax the constraint of static lattice gradually – replace by two weaker constraints: 
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1. Idea of Bravais lattice still holds - it is now the mean position rather than instantaneous 

position – ions move about the Bravais lattice site but never diffuse away from it – 

assumption valid except near melting point of the solid. 

2. The displacement of atoms about the equilibrium position is small as compared to the inter-

atomic distance. Made for analytical convenience – so that harmonic assumption holds – can 

ignore higher order terms in displacement- again not valid at high temperatures. The 

assumption fails completely in light element like solid Helium – need a Quantum theory from 

scratch. 

Consider elastic vibrations of crystal with single-atom basis.  

AIM: Find dispersion relation (relation between frequency and wavevector of the wave – dependence 

on the elastic constants of the medium). 

Start with a one-dimensional case. Valid for high-symmetry planes like [100], [110], [111] of a cubic 

lattice – for wave propagating along this direction entire planes of atoms move in phase either 

longitudinally or transversely – can describe each plane by a single co-ordinate – problem reduces to a 

1-D case.  

Assume – linear force-displacement relation (Hooke’s law type) –terms linear in relative displacement 

vanish at equilibrium – next term is quadratic in relative displacements of any two points in lattice – 

assume only nearest neighbour interactions. 

 

Force on n
th
 plane caused by the relative displacement of the (n+p)

th
 plane  is  

                       

K is the force constant 

 Relates from now on to a single atom  

 It is direction dependent 

1-D chain of ions with one basis 

Assume only nearest neighbour interactions: p=1 

 

 

Force on the n
th
 ion is: 

                          

                  

Equation of motion is:                       

 

Want solutions like (travelling wave solutions):                

                      

                                           

na (n+1)a (n-1)a 

un 
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This is the dispersion relation relating the frequency of oscillation to the wavelength of oscillation. 

What are the allowed values of k? 

Ratio of the displacements of two neighbouring planes is: 

    

  
 

         

     
      

The two planes oscillate with only a phase difference. Phase difference is meaningfully defined to 

only within   . So allowed values of ka lie between    or –
 

 
   

 

 
 - this is just the first Brillouin 

zone. 

Thus the allowed values of the wave-vectors are those that lie within the first Brillouin zone. Any 

value of k outside this range can be described by subtracting an appropriate reciprocal lattice vector. 

How many modes? 

 Total N normal modes - N degrees of freedom – complete solution to problem! 

  Notes: 

 Actual motion will be a liner combination of all the possible 3N modes (similar to Eigen-

value problems in quantum mechanics) 

e.g.: consider two balls connected by a spring. The normal modes (2 in number) are 

      and          – but the real motion is a complex combination of these two 

modes – the real motion need not be a plane wave propagating through the crystal – it 

will be a complex wave having contributions from all the 3N normal modes which are its 

Fourier components.  

 Solution describes plane wave propagating through the lattice – phase velocity (velocity 

at which a particular crest/trough moves)  /k and group velocity ∂ /∂k (velocity at 

which the envelope moves) 

Features of the simple dispersion relation: 

 
Figure 1: Dispersion relation for 1-D chain with single ion 

 

Case I – small values of ka: Long wavelength response λ>>a. 
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Linear dispersion    ; like for light or sound waves – phase velocity and group velocity are 

identical and independent of frequency. This is also the result in continuum where a=0 => ka=0 

identically.  

Case II –       : At the boundaries of the Brillouin zone 

       
 

 
       

  

 
     

 

 
   = constant 

   
  

  
   

 

 
       

  

 
      

 

The group velocity ∂ /∂k=0, standing waves. At k=± , the ratio of displacement of two neighbouring 

planes of ions is: 

    

  
 

         

     
              

The alternate planes oscillate with same amplitude but out of phase by 180
0
 – the wave moves neither 

to the left nor to the right – standing wave. 

 

Have seen similar situation before – Bragg reflection of electrons at the Brillouin zone boundary.  Is 

this the case here?   

For Bragg reflection            . Here the waves are propagating perpendicular to the planes; so 

 = /2; d=a (lattice spacing in the particular direction); n=1. 

 

So,                implies λ=2a or k=2 /λ =  /a 

 

So the values of k at the Brillouin zone boundary satisfy the condition for Bragg reflection of lattice 

vibrations leading to the formation of standing waves. 

  

1-D chain of ions with two ions per primitive cell 

 

Consider NaCl – FCC structure with 2-ion basis – what will be the dispersion relation?  

 

 

 
Figure 2:NaCl  structure 

 
Figure 3: NaCl planes 

 

Equilibrium positions of the ions for the n
th
 unit cell are na and (na+d). 

 

Displacements of the ions from their mean positions are : 
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un for the ion at na 

     vn for the ion at na+d 

                                 

                                 

 

Look for solutions of the form: 

                ---- (3) 

                ---- (4) 

Substituting (3) and (4) in (1): 

 

                                                            

                              

 

                                  

Similarly using (3) and (4) in (2): 

 

                                 

 

Set of homogeneous equations of type ax+by=0 and cx+dy=0 has a solution if and only if the 

determinants of the coefficients vanish  
  
  

            

So,  

                               

 

   
   

 
 

 

 
                   

 

This is the dispersion relation with the ratio of the displacements of the two ions in a cell given by  

  

  
   

       

         
 

How many modes? 

 Total allowed values of k (again lying in the first Brillouin zone) – for each value of k there are two 

possible values of   – total 2N normal modes – 2N degrees of freedom for a 1D lattice with two ions 

in each cell – complete solution to problem! 

 

Features of the dispersion relation: 

 

 
Figure 4:Dispersion relation for  two-ion basis 

 

Two values of   for a given value of k – two branches of the dispersion curve 
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 Lower branch is acoustic branch - so called because the dispersion at long wavelength (small 

ka) is  =vk; like ordinary sound waves.  

 Upper branch is optical branch - at long wavelength (small k) optical modes in ionic crystals 

interact with EM waves and are responsible for many of the optical properties like 

reflectivity, polarizability etc. 

 

Case I – small values of ka: Long wavelength response λ>>a.   

 

                  

 

Solutions 1:    
  

       
             ; Acoustic mode; two ions in the cell move in phase; linear 

sound-wave like dispersion.  

 

 

Figure 5: Acoustic mode 

Solutions 2:     
      

 
         ; Optical mode; two ions move out of phase. 

 

 

Figure 6: Optical mode 

 

Case II –       : At the boundaries of the Brillouin zone 

 

Solutions 1:    
  

 
         ; Acoustic mode; two ions in the cell move in phase; only G spring is 

stretched/compressed; standing wave.  

 

 

 

Figure 7: Acoustic mode 

Solutions I1:     
  

 
          ; Optical mode; two ions in the cell move out of phase; only 

harder K spring is stretched/compressed; standing wave – cells oscillate independent of each other!  
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Figure 8: Optical mode 

If K=G, the two modes are indistinguishable at zone boundaries, the two branches meet. 

 

Case III –K>>G: The two ions are connected by a very rigid spring 

Solutions 1:     
  

 
       

  

 
       

 

 
          ; Acoustic mode; behaves like a linear chain 

of ions of mass 2m connected by spring G – each cell behaves like a single unit – low energy 

oscillations so stiff K spring is unperturbed .  

 

Solutions I1:    
  

 
     

 

 
            ; Optical mode;    approximately independent of k. 

Behaves like a diatomic molecule of masses m connected by a spring of constant K. The two masses 

move approx out of phase.  

 

G/K is still finite, so   still has a dependence on k, although it is very weak. So as k changes the 

allowed value of   also changes slightly. Thus the number of allowed energy values is not strictly 

one; it forms a narrow band of allowed energy values. 

 

WHY?    G/K is not zero, so there is a finite interaction between the cells. Like in the tight binding 

model, as the strength of interactions between the atoms increase, the single atomic levels spread out 

into bands.  

 

Figure 9:Spreading of energy values into band with 

increasing inter-cell interaction  

Figure 10: energy band formation in tight binding approx 

 

Naive rule of thumb: Acoustic mode dynamics determined by inter-cellular interaction, units in the 

cell move in phase. In optical mode, the ions in each cell execute molecular vibrations; interactions 

between the different cells broaden out the allowed levels into a band.   

 


