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Sommerfeld-Drude model 

Recap of Drude model:  

1. Treated electrons as free particles moving in a constant potential background.  

2. Treated electrons as identical and distinguishable. 

3. Applied classical (Maxwell-Boltzmann) statistics on them. 

 

Drawbacks of this approach: 

1. electrons cannot be treated classically – they are Fermions  

2. They are identical and indistinguishable. 

3. They obey Pauli exclusion principle 

 

These observations imply that electrons obey Fermi-Dirac (FD) statistics. 

 

Sommerfeld Drude model: - Retains almost all aspects of Drude model with the following 

modifications: 

1. Treats electrons using FD statistics. 

2. Recognizes that their energies are discrete – treats them like a particle in a box of 

constant energy. 

3. Uses Pauli principle to distribute them in the available energy states. 

 

Ground state of ideal electron gas  
 

Electron confined in a cube of sides L at T=0, potential inside the cube is constant (take it to 

be zero) – potential at boundaries  . Assume non-interacting electrons i.e. 

                                   
 Hamiltonian is: 

 

   

  
       

Using the periodic boundary condition                     and so on, 

 

     
 

  
      

with the energy eigenvalues      
    

  
 - this is the dispersion relation for free electrons. 

 

 

Figure 1: Dispersion relation for free electrons 
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k is a position independent wave vector, each value of k label a distinct state.  

       
 

implying that k plays the role of wave-vector for the free electrons 

 

Allowed values of k are given by the quantization condition                     to be  

 

   
  

 
   where nx is an integer 

 

Now we have levels – put electrons in them following Pauli exclusion principle (Pauli 

exclusion principle is a manifestation of e-e interaction although we did not put it in 

explicitly in the Hamiltonian) – can do this as electrons are treated to be independent -  each 

level denoted by a particular value of k can accommodate two electrons (for two values of the 

spin projection).  

 

For large N the filled states form a sphere in k-space (remember        ) – its radius is kF 

(this is called the Fermi wave-vector)  and volume 
 

 
   

 
. This is the Fermi sphere.  kF is 

given by: 

 

  
 

 
   

  
 

 
  
  

    

 

          
 

 --- (1) 

 

Figure 2: Fermi sphere at T=0 

The highest occupied energy level in the ground state is called the Fermi energy. This 

separates the completely filled states from the completely empty ones in the ground state. For 

free electrons     
    

 

  
 . For metallic systems Fermi energy        and Fermi velocity 

   
   

 
          .  

 

Total ground state energy is 

    
    

  
    

 

 

For large N; the values of k are arbitrarily close to each other – can treat as continuum: 

 

 

 

 
 

   
    



PH-208 Sommerfeld model Page 3 
 

thus the total energy of the electronic system is  

   
 

   
 

    

  
     

 

   
 

    

  
       

 

  

  

   
  

 
 

Average energy per particle is 

 

 
 

 
 

 

 

 

 
    

 

  

  

   
  

     
       

 

 
   

 

 
      

 

In contrast to a classical gas, the degenerate quantum mechanical electron gas has appreciable 

ground-state energy. The Fermi temperature TF ~ 10
5
K; hence compared to classical gas at 

room temperature the average energy of electrons is about 100 times more.  

 

Ideal electron gas at finite temperatures 
 

Probability that a state with energy is occupied at temperature T is  

     
 

            
 

where  is the chemical potential and equals    at T=0. Nominally it is the value of energy at 

which the probability of occupation is ½.  

 

 

Figure 3: Fermi function at zero temperature and at a finite temperature 

 

The total energy of the electron gas at a finite temperature is: 

 

   
 

   
            

Or the energy density u=E/V is 

  
 

   
            

Similarly number density n is:   

  
 

   
        

Change the integral form from over k to over energy: 

 

  

   
 

 

   
       

 

  
     

 

  

   

  
 

 

   

  

  
 

or 

  
 

   
                   

 

 

 

where 
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is the density of states, g()d= # states per unit volume in the energy interval and d.  

 

Similarly,  

              
 

 

 

 

This is a general form independent of any approximations regarding the interaction of the 

electrons (which enters only through the specific form of g() used).  

 

The number density in Sommerfeld model is given by: 

 

             
 

 

 
 

   
 
  

  
 

 
 
         

 

 

 

or, 

    
    

    
 
   

     
 

   
  

 

where         
 

  
 

    

        
  

 

 
 is Fermi integral of order ½ - can be solved exactly only 

in two extreme limits. 

 

1. 
 

   
   (valid for low-density systems like semiconductors):  

 

    
    

    
 
   

 
 

    

 

2. 
 

   
   (valid for high-density systems like metals): 

  
 

    
 

   
        

  

 

 

  
    

 

  
 

    
   

   
   

   
  

 
 
   

 
 
 

   ---(2) 

 

 

Also, from equation (1) we have 

  
 

     
  

 

    
    

   
   

----(3) 

 

Combining eqns. 2 and 3 we get,  

       
  

 
 
   

 
 
 

   

 
  

 

 

This gives the expression for   in terms of    (in the limit  
   

 
  ): 
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Even near the melting point of metals,          , hence for metals at all temperatures 

       .  
 

The energy density in Sommerfeld mode can be similarly calculated: 

  

 

              
 

 
    

  

 
            

 

 

The specific heat then becomes: 

   
  

  
 

  

 
  

        
  

 

   

  
     

Compared to classical value ~     the Sommerfeld electronic contribution is  
   

  
 ~100 

times smaller.  

 

Physically      easy to understand – at any finite temperature the Fermi distribution 

changes appreciably from its zero temperature value only in a narrow region of width few kBT 

around . The Fermi edge is smeared out over this narrow energy range by the thermally 

created electron–hole pairs. The states are neither fully occupied nor completely empty here. 

At energies that are farther than a few times kBT from the chemical potential , states within 

the Fermi sphere continue to be completely filled, as if they were frozen in, while states 

outside the Fermi sphere remain empty. Thus, the majority of the electrons are frozen in 

states well below the Fermi energy: only electrons in a region of a few times kBT in width 

around    – i.e., about a fraction        of all electrons – can be excited thermally, giving 

finite contributions to the specific heat. 

 

Figure 4: Derivative of Fermi function at a finite temperature 

Number of electrons excited at any temperature T is            . Each of them gains 

energy    . Total energy gain             . So   

 

   
  

  
   

        

 

     is not seen at room temperature, rather the specific heat over any extended 

temperature range goes as          .   
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The values of  measured for Alkali metals match quite well with the experimental values. 

The difference in the calculated and experimental values can be attributed to an apparent 

change in the mass of the electrons in response to the periodic potential due to the ions in the 

crystal. For certain compounds (called Heavy Fermions) like CeAl3 and CeCu6 ex can be 

hundres of times larger than th – to account for these we need striong e-e interactions.  

 

Other properties of electron gas from Sommerfeld model:   does not depend on the 

distribution function – only properties that explicitly depend on v or l will change from the 

Drude value.   

a. Thermal conductivity   
 

 
     remains unchanged. 

b. Thermo power    
 

   
    

  

 
 
  

 
  

   

  
    

   

  
         - 100 times 

smaller than Drude value, closer to measured values of Q. 

c. Electrical properties remain unchanged. 

d. Wiedemann-Franz law still remains theoretically valid (experimentally valid only at 

very low T and at high T). 

 

How can we use quantum statistics in a classical dynamical theory? – Why does 

Sommerfeld model work? 
 

We can use classical description if uncertainty principle is not violated. For typical electron 

       so maximum        ; implying the uncertainty in its position is     
 

  
 

 

  
 which 

is of the order of the lattice spacing. If we do not want to probe electron dynamics in the scale 

of lattice spacings classical description is OK. Conduction electrons are delocalized – need 

not probe them on atomic scale – mean free path ~ 100 Angstroms. Probing with visible light 

(wavelength ~1000 Angstroms) also poses no problems. Cannot study electron dynamics 

under X-ray excitation ( ~ 1 Angstrom) by using this model. 

    


