Hartree-Fock equation — very elementary introduction

One electron Schrodinger equation is:
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How do we include electron-electron interaction in U(r)? Need to start with the wave function

for all N electrons in the material Y(ry, 75 ... ... Ty)
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Impossible to solve for a realistic system with ~102%3 particles

Way out: Look for alternate forms of U(r) that yields a solvable Hamiltoninan but is also as
close to reality as possible.

lonic part of U(r): U°"(r) = 2y, —— |R p

4TTE
Electronic part of U¢(r): Treat all electrons as forming a smooth charge distribution p(r).
The potential energy of a particular electron at r due to this potential is
1
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In the independent electron picture the contribution of an electron in level y; (1) to p(r) is

pi(r) = —e [P;()|?

Hence, the total charge density at point r is

p() = —e D (@)
i
Using this the Hamiltonian for a particular electron in the system is:
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There is one such equation for every electron in the system these are the Hartree equations —
solved iteratively — select a trial wave function for ;(r) - calculate U®(r) based on this —
solve the Hartree equation to get the y; (1) - continue till the results converge.

This method is also called the ‘self consistent field approximation’.

Inadequacy of the Hartree theory:

1. Deals with the average and not individual position of electrons in the system.
2. Does not contain ’exchange terms’.
3. Cannot give proper screening.
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Hartree- Fock Equation

Variational form of the wave function: solution of H1i = &y is any function that makes the
quantity
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stationary. Using this procedure for the Hartree equations give:
Y(r151,7252 e v TySy) = P1(1151) Yo (128;) . Yy (rysy)
where ¥ (r;s;) are the orthonormal single electron wave functions (orbitals).

For Pauli principle to be applicable, the above solution should be anti-symmetric upon the
exchange of the co-ordinates two electrons i.e.

tp(rlsl,rzsz . TiSiTS; .....rNsN) = - v,lj(rlsl,rzs2 W TSiTL ..rNsN)

This can be true only if the wavefunction is identically zero. Thus the variational solution to the
Hartree equation does not satisfy Pauli principle as it should for a fermionic system.

Generalization of the Hartree solution — Slater determinant: This problem can be avoided if the
wave function is expressed as a combination of all its permutations taking the Pauli principle
into account (whenever an odd number of electron pairs interchange places the wave function
picks up a negative sign). This can be conveniently described by the Slater determinant:

Y1(rys) Pu(resz) . . . P(rysy)

Yo (r181) Ya(rzsy) . . . Pa(rysy)
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Evaluate the energy using this wavefunction:
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Minimizing this with respect to ;" () we get the Hartree-Fock Hamiltonian:
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The last term is the exchange term — this one has no classical analogue and arises solely due to
the Fermionic statistics of the electronic system.

Solution of Hartree-Fock (HF) equation for free electrons: Artificial problem. Wavefunction of
free electron is

Y;(r) = 1/7V e*" x spin function

Check if this function satisfies the HF equation. For this wavefunction U¢ (r) is uniform in
space — for free electron case the ions are treated as a uniform distributed of positive charge
with the same density as the electronic charge; hence U (r)+U®"(r) =0

Evaluating the exchange term:
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Put this in the HF equation to get

Hp(r) = e(k)p; (1)

with
h2k? dk e? 4nm n2k?  e? k
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where F(x) = %+ 1::2 In |%
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This shows that the plane wave solution satisfies the HF equation — energy is no longer ik
there is a second term (comparable to the first) arising due to e-e interactions.
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