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Abstract: The 11-year sunspot cycle has many irregularities, the most prominent amongst them being the grand minima
when sunspots may not be seen for several cycles. After summarizing the relevant observational data about the irregu-
larities, we introduce the flux transport dynamo model, the currently most successful theoretical model for explaining the
11-year sunspot cycle. Then we analyze the respective roles of nonlinearities and random fluctuations in creating the
irregularities. We also discuss how it has recently been realized that the fluctuations in meridional circulation also can be a
source of irregularities. We end by pointing out that fluctuations in the poloidal field generation and fluctuations in

meridional circulation together can explain the occurrences of grand minima.
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1. Introduction

The number of sunspots seen on the solar surface rises and
falls with a period of about 11 years. This 11-year cycle of
sunspots is one of most intriguing natural cycles which is
affecting our lives in many ways as our society becomes
more dependent on technology. Violent explosions known
as solar flares occur more frequently when there are more
sunspots. Apart from producing the beautiful polar aurorae,
a large flare can disturb the ionosphere causing disruptions
in radio communication, can damage electronics in man-
made satellites, can make airlines flights near geomagnetic
poles particularly hazardous and can even trip power grids.
On 13 March 1989, a large part of eastern Canada had a
power blackout caused by a powerful solar flare.

Figure 1 shows the sunspot number as a function of time
from 1610. Galileo and some of his contemporaries were the
first scientists to study sunspots systematically. The initial
entries in Fig. 1 are based on their records. Then, for nearly a
century, sunspots were rarely seen—a period known as the
Maunder minimum. Afterwards the sunspot number has
varied periodically with a rough period of about 11 years,
although we see a considerable amount of irregularity. Some
cycles are stronger than the average and some are weaker.

*Corresponding author, E-mail: arnab@physics.iisc.ernet.in

After the discovery of the sunspot cycle by Schwabe in
1843 [1], for a long time there was no theoretical expla-
nation for it. When Hale discovered in 1908 [2] that a
sunspot is a site of a concentrated magnetic field (about 0.3
T, only a little bit weaker than the strongest magnetic fields
produced in our laboratories by large electromagnets), it
became clear that the 11-year sunspot cycle is essentially
the magnetic cycle of the Sun. It may be mentioned that
Hale’s discovery of magnetic fields in sunspots was a truly
momentous discovery in the history of physics because that
was the first time somebody found a conclusive evidence of
large-scale magnetic fields outside the Earth’s environ-
ment. Now we know that magnetic fields are ubiquitous in
the astronomical universe.

It is now generally accepted that a magnetohydrody-
namic (MHD) process known as the dynamo process is
responsible for generating magnetic fields in astrophysical
systems. The foundations of dynamo theory were laid
down in a 1955 classic paper by Parker [3], in which he
derived the dynamo equation arising out of MHD turbu-
lence subject to rotation. Afterwards, Steenbeck et al. [4]
developed the mean field formalism of dynamo theory in a
more systematic way.

The particular dynamo process responsible for produc-
ing the 11-year sunspot cycle is called the flux transport
dynamo process. Invoking some early ideas due to Bab-
cock [5] and Leighton [6], the flux transport dynamo theory
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Fig.1 A plot of the yearly averaged sunspot number from 1610 to the
present time

was first formulated by Wang et al. [7], Choudhuri et al. [8]
and Durney [9]. This theory has been remarkably suc-
cessful in providing theoretical explanation of various
aspects of the sunspot cycle. At first, efforts have been
focussed on explaining regular aspects of the sunspot cycle.
After the successful modelling of the regular aspects, the
thrust of research in the last few years has been to apply the
flux transport dynamo model to study the irregularities of
the sunspot cycle.

An earlier review by the present author [10] summarized
the basic observational data about the sunspot cycle and
then discussed how the flux transport dynamo model was
developed to explain these observational data. Although we
briefly summarize the salient features of the flux transport
dynamo, we do not want to repeat the full discussions of
the previous review. So we would urge the readers to read
this previous review before reading the present review. The
present review can be regarded as a continuation of the
previous review. The main aim of the present review is to
discuss how the irregularities of the sunspot cycle are
modelled with the flux transport dynamo. Although a little
bit of discussion of this subject can be found at the end of
the previous review [10], some very important develop-
ments took place in this field after that review was written.
These very recent developments are highlighted throughout
the present review.

2. Some aspects of observational data

The earlier review [10] provided a summary of the regular
periodic aspects of the sunspot cycle (Hale’s polarity law,
butterfly diagram). So we have not discuss those topics
here. We merely focus our attention on the irregularities of
the sunspot cycle. If all the irregularities were really
‘irregular’ in the true sense, then it would have been very
difficult to develop any theoretical understanding about
them. However, one can discern certain patterns within the
irregularities which give us valuable clues how these
irregularities may arise and how they can be modelled
theoretically.

To discover patterns within the irregularities of the
sunspot cycle, one would like to have as much data about
the irregularities as possible, so that statistical inferences
become meaningful. We have collected actual sunspot
records for about four centuries, although the records
become less reliable as we go earlier than the nineteenth
century. One important question is whether we have other
proxies of sunspot activity through which we can infer
about sunspot cycles in the past even without actual sun-
spot records. When the sunspot activity is low, the mag-
netic field in the solar wind becomes weaker, allowing
more cosmic ray particles to reach the Earth and to produce
more of the radioactive nuclei '°Be and '“C by interacting
with air molecules. If we can infer what the concentrations
of 1Be and '*C in the atmosphere were at earlier times,
then from that we can reconstruct a history of sunspot
cycles in the past. The atmospheric concentration of '“C in
the past can be inferred by analyzing old tree rings,
whereas the atmospheric concentration of '°Be in the past
can be inferred from the polar ice cores which have formed
over many years. It has now been possible to reconstruct
the history of sunspot activity for the past 11,000 years.

At the first sight, the strengths of different sunspot
cycles as seen in Fig. 1 may appear to vary randomly. Let
us first discuss if there are any long-term patterns. Sunspot
cycles have been numbered from the middle of the eigh-
teenth century, the present cycle being cycle 24. For sev-
eral cycles from cycle 10 (beginning around 1855), the odd
cycle has been stronger than the previous even cycle, a
pattern at last broken by cycle 23 which turned out to be
weaker than cycle 22. This is called the Gnevyshev—Ohl
rule [11], though departures from this rule are known.
Apart from this two-cycle pattern, it is often claimed that
there is a modulation of cycle amplitudes involving eight
cycles, often called the Gleissberg cycle. From the limited
data we have, it is very difficult to either prove or disprove
the existence of the Gleissberg cycle. What is clear, how-
ever, is that sometimes the sunspot activity may almost
disappear for many years and several cycles may go
missing, like what happened during the Maunder mini-
mum. Such events are called grand minima. On recon-
structing the sunspot activity for several millenia, it is now
clear that the Maunder minimum was not unique. It is
estimated that there have been 27 such grand minima
during the last 11,000 years [12].

Apart from these patterns involving the amplitudes of
different cycles, there are other patterns within the irreg-
ularities of sunspot cycles. The earlier review [10] dis-
cussed in detail the possible correlation between the polar
field during the sunspot minimum and the strength of next
cycle. If such a correlation does exist (which seems to be
the case from the limited data we have), then that gives a
powerful tool for predicting the strength of a sunspot cycle
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before its beginning, once we know the strength of the
polar field during the previous sunspot minimum. The last
interesting pattern to which we wish to draw the readers’
attention is what is called the Waldmeier effect [13]. It
appears that strong cycles rise fast, whereas weak cycles
rise more slowly. In other words, there is an anti-correla-
tion between the rise times of the cycles and their strengths.

Within the last few years, attempts are being made to
explain these patterns of irregularities with the flux trans-
port dynamo model. After discussing the basic model in the
next section, we shall come to the theoretical modelling of
irregularities from Sect. 4.

3. Flux transport solar dynamo

We now give a very brief summary of the flux transport
dynamo model of the sunspot cycle. We emphasize again
that this discussion is not meant to be self-explanatory. It is
not meant to be accessible to readers without any previous
knowledge of the subject. Readers without any previous
knowledge are urged to read the previous review [10]
before proceeding further.

The toroidal and the poloidal components of the Sun’s
magnetic field are supposed to sustain each other through a
feedback loop. The differential rotation of the Sun (which
is now fully mapped by helioseismology) stretches out the
poloidal field to produce the toroidal field. This primarily
takes place at the bottom of the solar convection zone (at
r = 0.7R.) where the differential rotation is concentrated.
To complete the dynamo loop, the poloidal field has to be
generated back from this toroidal field. How this happens is
more subtle. The original idea of Parker [3] and Steenbeck
et al. [4]—often called the a-effect—was that the toroidal
field is twisted by the helical turbulence of the convection
zone to produce the poloidal field. This is possible only if
the toroidal field does not have energy density more than
the energy density of turbulence. The condition for this is
that the toroidal field should not be stronger than 10* G.
The idea of the toroidal field being twisted by helical tur-
bulence had to be questioned when detailed calculations of
the rise of the toroidal field by magnetic buoyancy to form
sunspots were carried out on the basis of the thin flux tube
equation [14, 15]. The simulations of Choudhuri and Gil-
man [16], Choudhuri [17], D’Silva and Choudhuri [18] and
Fan et al. [19] have suggested that the toroidal field at the
bottom of the convection zone has to be as strong as 10° G
in order to match different aspects of observations. The o-
effect cannot operate on such a strong field.

An alternative idea of the poloidal field generation goes
back to Babcock [5] and Leighton [6]. The toroidal field
rising due to magnetic buoyancy produces bipolar sunspots
on the solar surface with tilts caused by the Coriolis

force—an effect known as Joy’s law. When a tilted bipolar
sunspot decays, the two opposite magnetic polarities spread
preferentially in slightly different latitudes. Many of us
now believe that the poloidal field generation in the solar
dynamo takes place due to this Babcock-Leighton mech-
anism. The Sun has a meridional circulation which is
poleward near the surface and advects this poloidal field
poleward [20-23]. This meridional circulation also plays a
crucial role in the solar dynamo. The kind of dynamo in
which the poloidal field is generated by the Babcock—
Leighton mechanism and the meridional circulation plays a
critical role is called the flux transport dynamo.

Figure 2 is a cartoon explaining how the flux transport
dynamo operates within the solar convection zone. The
toroidal field is generated at the bottom of the convection
zone where the strong differential rotation discovered by
helioseismology stretches out the poloidal field to generate
the toroidal field. Then this toroidal field rises to the solar
surface due to magnetic buoyancy to produce the tilted
bipolar sunspots. The decay of these tilted bipolar sunspots
then gives rise to the poloidal field near the surface by the
Babcock-Leighton mechanism. The meridional circulation
is also indicated in Fig. 2. We observe the meridional
circulation to be poleward in the top layers of the con-
vection zone. In order to conserve mass, the meridional
circulation has to be equatorward deeper down. It is gen-
erally assumed in flux transport dynamo models that the
equatorward flow is at the bottom of the convection zone,
although this is not yet confirmed from observations. The
poloidal field produced near the surface is advected

++ Strong Differential Rotation
..... Babcock-Leighton Process
—- \agnetic Buoyancy

—> Meridional Circulation

Fig. 2 A cartoon explaining how the flux transport dynamo works
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poleward by the poleward meridional circulation there,
whereas the toroidal field produced at the bottom of the
convection zone is advected equatorward by the equator-
ward meridional circulation there. This provides the theo-
retical explanation of both the observed poleward drift of
the surface magnetic field (outside active regions) and the
equatorward migration of the sunspots which form from the
toroidal field. While the basic idea of the flux transport
dynamo was given in an early paper by Wang et al. [7], the
first two-dimensional models were constructed by Cho-
udhuri et al. [8] and Durney [9].

A numerical code SURYA was developed in our group
in Indian Institute of Science to solve the basic equations of
the flux transport dynamo [24, 25] and was made public
from 2005. A comparison of the observational data shown
in Fig. 2 of [10] with theoretical results shown in Fig. 10 of
[25] makes it clear that the flux transport dynamo is rea-
sonably successful in reproducing various aspects of the
periodic behaviour of the sunspot cycle. Apart from solving
the solar dynamo problem, the code SURYA has also been
modified to study the accretion of matter on magnetized
neutron stars [26, 27]. It may be noted that a flux tube
approach has to be combined with the mean field dynamo
equation to have a more complete understanding of the
magnetic field dynamics within the solar convection zone
[28]. For example, we have to consider the wrapping of
poloidal field lines around rising flux tubes to explain how
the observed current helicity of sunspots arise [29, 30]. The
flux transport dynamo model has also been applied to
model the back-reactions of the dynamo-generated mag-
netic field such as torsional oscillations [31].

There have been some recent claims that the equator-
ward reverse flow of the meridional circulation occurs at a
shallow depth and not at the bottom of the convection zone
as usually assumed in the flux transport dynamo model [32,
33]. If these claims are corroborated by other independent
studies and turn out to be true, then we have to address the
question whether the flux transport dynamo can work with
a shallow meridional circulation. Guerrero and de Gouveia
Dal Pino [34] considered a shallow cell of meridional
circulation with equatorward turbulent pumping in the
region below it and succeeded in getting realistic butterfly
diagrams. Whether such equatorward pumping exists is
questionable. If there is just a shallow cell of meridional
circulation and nothing below it, then the flux transport
dynamo cannot work. However, recently Hazra et al. [35]
have shown that many of the attractive features of the flux
transport dynamo are retained if, below the shallow cell of
meridional circulation at the top of the convection zone,
there are additional cells such that there is an equatorward
meridional circulation at the bottom of the convection
zone. Thus, even if the meridional circulation has a return
flow at a shallow depth, the flux transport dynamo can

presumably still work as long as there is an appropriate
equatorward flow at the bottom of the convection zone.

The original flux transport dynamo model of Choudhuri
et al. [8] leads to two offsprings: a high diffusivity model
and a low diffusivity model. The diffusion times in these two
models are of the order of 5 and 200 years respectively. The
high diffusivity model has been developed by a group
working in IISc Bangalore (Choudhuri, Nandy, Chatterjee,
Jiang, Karak), whereas the low diffusivity model has been
developed by a group working in HAO Boulder (Dikpati,
Charbonneau, Gilman, de Toma). The differences between
these models have been systematically studied by Jiang et al.
[36] and Yeates et al. [37]. Both these models are capable of
giving rise to oscillatory solutions resembling solar cycles.
However, when we try to study the irregularities of the
cycles, the two models give completely different results. We
need to introduce fluctuations to cause irregularities in the
cycles. In the high diffusivity model, fluctuations spread all
over the convection zone in about 5 years. On the other
hand, in the low diffusivity model, fluctuations essentially
remain frozen during the cycle period. Thus the behaviours
of the two models are totally different on introducing fluc-
tuations. As we shall see in the next three Sections, only the
high diffusivity model can provide explanations for certain
aspects of sunspot cycle irregularities. The high diffusivity
also helps in establishing the dipolar parity of the solar
magnetic field [25, 38] and can explain the lack of signifi-
cant hemispheric asymmetry [39, 40].

4. Nonlinearities versus random fluctuations

The magnetic fields produced by the dynamo can react
back on the velocity fields driving the dynamo action. This
leads to nonlinearities in the mathematical theory. It is well
known that nonlinear dynamical systems can show com-
plicated chaotic behaviours and one possibility is that
irregularities of the sunspot cycle are just a manifestation
of such chaotic behaviour. However, the mean field theory
of the dynamo involves averaging over turbulence and we
always have fluctuations around the mean. These random
fluctuations also may be the source of irregularities. For
some time, there has been a debate in this field whether the
irregularities of the sunspot cycle are primarily due to
nonlinear chaos or due to random fluctuations. While we
now think that there are signatures of both the effects, it
seems that the really large irregularities like the grand
minima are caused by random fluctuations.

Let us point out why many of us think that the largest
irregularities of the sunspot cycle are not due to nonlinear
chaos. The simplest way of capturing the effect of the
nonlinear feedback in a kinematic dynamo model (in which
the fluid flow equations are not solved) is to consider a
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quenching of the o parameter (the crucial parameter in the
dynamo generation of magnetic fields) as follows:

= (1)
1+ [B/By|

where B is the mean magnetic field produced by the
dynamo and By is the value of magnetic field beyond which
nonlinear effects become important. There is a long history
of dynamo models studied with such quenching [41-43]. In
most of the nonlinear calculations, however, the dynamo
eventually settles to a periodic mode with a given ampli-
tude rather than showing sustained irregular behaviour. The
reason for this is intuitively obvious. Since a sudden
increase in the amplitude of the magnetic field would
diminish the dynamo activity by reducing o given by
Eq. (2) and thereby pull down the amplitude again (a
decrease in the amplitude would do the opposite), the
o-quenching mechanism tends to lock the system to a
stable mode once the system relaxes to it. Only by using
somewhat unusual kinds of nonlinearities, usually with
large time delays, it is sometimes possible to get chaotic
behaviour in the system. Although nonlinearities may not
produce sustained chaotic behaviour, It has been suggested
that the Gnevyshev—Ohl rule is caused by a period dou-
bling due to nonlinearities [44, 45] and there is no other
good theoretical explanation for it. Presumably the non-
linearities play some role in producing such effects as the
Gnevyshev—Ohl rule, but we believe that they are not the
main cause behind the large irregularities of the sunspot
cycle.

Now let us come to the possibility that the irregularities
of the sunspot cycle are primarily caused by random fluc-
tuations, as suggested first by Choudhuri [46] and Hoyng
[47]. The crucial issue is to figure out the nature of random
fluctuations in the flux transport dynamo. Choudhuri et al.
[48] have identified the Babcock—Leighton mechanism of
poloidal field generation as the main source of random
fluctuations. This mechanism depends on the tilts of bipolar
sunspot pairs. While the average tilts are given by Joy’s
law, one finds a large scatter around this average, pre-
sumably produced by the fact that the rising flux tubes are
buffeted by turbulence in the convection zone [49]. This
scatter around Joy’s law produces fluctuations in the po-
loidal field generation process, ultimately giving rise to
irregularities in the dynamo mechanism. In the high dif-
fusivity flux transport dynamo model, we can theoretically
explain the observed correlation between the polar field
during the sunspot minimum and the strength of the next
cycle if the irregularities of cycles primarily arise due to
fluctuations in the Babcock—Leighton mechanism, but we
do not get this correlation in the low diffusivity model [36].
Since the origin of this correlation in high diffusivity model
has been discussed in detail in the earlier review [10], we

shall not get into a detailed discussion of this subject here,
except to mention that the theoretical explanation of this
correlation lends support simultaneously to the high dif-
fusivity dynamo model and to the idea that the fluctuation
in the Babcock-Leighton mechanism is the major cause of
irregularities in the sunspot cycle. Recent analyses of the
sunspot tilt data by different groups also provide strong
support to the scenario outlined above [50, 51].

We have already mentioned that the correlation between
the polar field during a sunspot minimum and the strength
of the next cycle provides a mechanism for predicting
future cycles. We shall only make some comments on this.
On the basis of the observation that the polar field was
rather weak during the last sunspot minimum, several
groups predicted a few years ago that the present cycle 24
would be rather weak [52, 53]. One crucial question at that
time was whether theoretical solar dynamo models could
be used to make a prediction. During the sunspot minimum
before the previous cycle 23 (in the mid-1990s), solar
dynamo models were still too primitive for this purpose.
The sunspot minimum before the present cycle 24 was the
first sunspot minimum during which the solar dynamo
models had reached a certain level of sophistication to
make such predictions. Dikpati and Gilman [54] have used
their low diffusivity model to predict that the cycle 24
would be the strongest cycle in the last half century. On the
other hand, Choudhuri, Chatterjee and Jiang [48] have
used their high diffusivity model to predict that the
cycle 24 will be the weakest cycle in nearly a century. This
is a rather robust prediction of this high diffusivity model,
because this model produces a strong correlation between
the polar field during the sunspot minimum and the next
cycle, and the fact that the polar field was very weak
during the last sunspot minimum was incorporated in the
theoretical model for this prediction work. Figure 3 shows
the present status of the sunspot number data with the two
theoretical predictions indicated. It is clear that the
observational data is consistent with the prediction of
Choudhuri et al. [48], making this the first successful
prediction of a cycle from a theoretical dynamo model in
the history of this subject.

Lastly, we come to the question whether fluctuations in
the poloidal field generation can produce grand minima.
When the poloidal field at the end of a cycle falls to a
very low value due to these fluctuations, Choudhuri and
Karak [55] found that the dynamo can be pushed into a
grand minimum. In fact, they were able to construct an
example of a grand minimum having the broad features of
the Maunder minimum. We thus conclude that the fluc-
tuations in the Babcock-Leighton mechanism for gener-
ating the poloidal field is a possible mechanism for
producing grand minima—especially if the dynamo is not
too supercritical [56].
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Fig. 3 The monthly sunspot number plot for the last few years,
indicating the theoretical predictions. The upper star is the peak of
cycle 24 predicted by Dikpati and Gilman [54], whereas the lower
star is what was predicted by Choudhuri et al. [48]. The circle on the
horizontal axis indicates the time when these predictions were made
(in 2006)

5. Fluctuations in meridional circulation

Until about 5-6 years ago, it was not generally recognized
that there is another important source of sunspot cycle
irregularities: fluctuations in the meridional circulation.
The period of the flux transport dynamo is approximately
given by the time taken by the meridional circulation at the
bottom of the convection zone to move from higher lati-
tudes to lower latitudes. A faster meridional circulation
would make the cycle period shorter—the period of the
flux transport dynamo varying roughly as the inverse of the
meridional circulation speed. Since the meridional circu-
lation determines the period of the flux transport dynamo, it
is not surprising that any fluctuations in meridional circu-
lation would have an effect on the flux transport dynamo. It
has been found recently that the meridional circulation has
a periodic variation with the solar cycle, becoming weaker
at the time of sunspot maximum [57-59]. Presumably the
Lorentz force of the dynamo-generated magnetic field
slows down the meridional circulation at the time of the
sunspot maximum. Karak and Choudhuri [60] found that
this quenching of meridional circulation by the Lorentz
force does not produce irregularities in the cycle, provided
the diffusivity is high as we believe. Then the question
arises whether there are other kinds of fluctuations in the
meridional circulation apart from these cyclic modulations.

We have reliable observational data on the variations of
meridional circulation only for a little more than a decade. To
draw any conclusions about the variations of meridional
circulation at earlier times, we have to rely on indirect
arguments. If we assume the cycle period to go inversely as

meridional circulation, then we can use periods of different
past solar cycles to infer how meridional circulation has
varied with time in the last few centuries. On the basis of such
considerations, it appears that the meridional circulation had
random fluctuations in the last few centuries with correlation
time of the order of 30-40 years [61]. We now discuss the
effects that these random fluctuations of meridional circu-
lation may have on the dynamo. Based on the analysis of
Yeates et al. [37], we can easily see that dynamos with high
and low diffusivity will be affected very differently. Suppose
the meridional circulation has suddenly fallen to a low value.
This increases the period of the dynamo and lead to two
opposing effects. On the one hand, the differential rotation
have more time to generate the toroidal field and try to make
the cycles stronger. On the other hand, diffusion also have
more time to act on the magnetic fields and try to make the
cycles weaker. Which of these two competing effects wins
over depend on the value of diffusivity. If the diffusivity is
high, then the action of diffusivity is more important and the
cycles become weaker when the meridional circulation is
slower and the cycle period is longer. The opposite happens
if the diffusivity is low.

The important question now is if there is any kind of
observational data to indicate whether the cycles become
weaker (which will happen for high diffusivity) or stronger
(which happens for low diffusivity) when the meridional
circulation is slower resulting in longer cycles. The Wald-
meier effect discussed in Sect. 2 provides precisely this kind
of observational data. The rise time of the sunspot cycle
roughly goes as the duration of the cycle. If the meridional
circulation is slower, then the cycle is longer and the rise
time is also longer. According to the Waldmeier effect, the
longer cycle tends to be weaker in strength. This happens
only if the turbulent diffusivity is high. Karak and Cho-
udhuri [61] were able to explain the Waldmeier effect on
the basis of the high diffusivity model, whereas the low
diffusivity would give the opposite of the Waldmeier effect.
The success in explaining the Waldmeier effect is another
feather in the cap of the high diffusivity model.

Since a slowing of the meridional circulation would
make the cycles weaker, a question that comes before us is
whether a sufficient slowing of the meridional circulation
can cause a grand minimum. Karak [62] indeed found that
the flux transport dynamo can be pushed into a grand
minimum if the meridional circulation drops to 0.4 of its
normal value. This is clearly another possible mechanism
for producing a grand minimum.

6. A theoretical model of grand minima

From the discussions in the previous two sections, it should
be clear that a grand minimum can be caused by two
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means: if the poloidal field produced at the end of cycle is
very weak as a result of fluctuations in the Babcock-—
Leighton mechanism and if the meridional circulation falls
to a very low value due to its fluctuations. Presumably the
grand minima arise due to the combined effect of both
these kinds of fluctuations, as shown by Choudhuri and
Karak [63]. Let y be the normalized strength of the polar
field (i.e. the strength of the polar field divided by its
average value over many cycles) at the end of a cycle and
let vy be the amplitude of the meridional circulation. Fig-
ure 4 shows the two-dimensional parameter space of 7y
versus vg. The condition at the beginning of a sunspot cycle
is clearly represented by a point in this two-dimensional
parameter space. Choudhuri and Karak [63] found that the
dynamo is pushed into a grand minimum if the condition at
the beginning of the cycle corresponds to the shaded region
of the parameter space. What is the probability of this
happening?

Presumably both the fluctuations we are considering
would be of Gaussian nature. Then the joint probability
that the polar field strength at the end of a cycle lies in the
range ), Y+ dy and the amplitude of the meridional cir-
culation at the same time lies in the range vy, vy + dvy is
given by

_ (vo — V_0)2
P(V»VO)dVdVO = — Q=
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. exnl—
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The probability that the condition at the beginning of a
cycle lies in the shaded region of Fig. 4 is obtained by
integrating the double Gaussian given by Eq. (2) over this
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Fig. 4 The parameter space indicating the normalized strength y of
the poloidal field and the amplitude of the meridional circulation, the
shaded region being the part to the parameter space giving rise to
grand minima

region. To carry on this integration, we need values of o,
and ¢, which are the widths of these Gaussians. Choudhuri
and Karak [63] realized that these can be obtained from the
observational data of the last 28 cycles. The periods of
these cycles give the values of the meridional circulation
during these cycle, from which the probability distribution
function of the meridional circulation can be constructed.
Since strengths of the cycles are correlated with the polar
field strength 7y at the beginning of the cycle, the strengths
of the last 28 cycles can be used to construct the probability
distribution function of y. Although we would not expect a
very good Gaussian fit from a set of 28 data points, Cho-
udhuri and Karak [63] found that the fits were not too bad
and could estimate the values of g,, ;. On carrying out the
integration of the double Gaussian over the shaded region
in Fig. 4, Choudhuri and Karak [63] found the value to be
1.7 %. This means that 17 cycles out of 1,000 cycles (in
11,000 years) would have conditions appropriate for grand
minima at their beginnings. This is remarkably close to the
observational data that there had been 27 grand minima in
the last 11,000 years. In fact, in actual runs of the dynamo
code with fluctuations given by the double Gaussian (2),
Choudhuri and Karak [63] typically found about 24-30
grand minima in a run spanning 11,000 years.

While this may seem like a very encouraging result, one
aspect of grand minima still remains completely shrouded
in mystery. If there are no sunspots at all during a grand
minimum, one important question is whether the Babcock—
Leighton mechanism which depends on the existence of
tilted bipolar sunspots can operate at all. If the Babcock—
Leighton mechanism is not operative, then some mecha-
nism has to build up the poloidal field so that the Sun can
eventually come out of the grand minimum. If the magnetic
field during the grand minimum becomes sufficiently weak,
then one possibility is that the a-effect originally envisaged
by Parker [3] and Steenbeck et al. [4] becomes operative.
Karak and Choudhuri [64] have done some explorations of
this. The results are inconclusive. While we now have
some idea how the Sun gets pushed into grand minima, we
have very little understanding how the Sun gets out of a
grand minimum after falling into one.

7. Conclusion

Starting from mid-1990s the flux transport dynamo model
has been emerging as an attractive model of the 11-year
sunspot cycle. At first, explaining the regular features of
the cycle theoretically was the main objective of this
model. Only within the last few years, this model has been
used increasingly to explain the irregularities of the sunspot
cycle. The main aim of this review is to summarize this
recent phase of research in this field. While nonlinearities
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may play some role in producing the cycle irregularities, it
appears that the fluctuations in the Babcock—Leighton
mechanism and the fluctuations in the meridional circula-
tion are the main causes behind the sunspot cycle irregu-
larities. The success in explaining the various statistical
aspects of grand minima on the basis of these two kinds of
fluctuations introduced into our theoretical model gives us
confidence that we are probably on the right track.
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