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The irregularities of the sunspot cycle and their theoretical modelling
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Abstract: The 11-year sunspot cycle has many irregularities, the most prominent amongst them being the grand minima

when sunspots may not be seen for several cycles. After summarizing the relevant observational data about the irregu-

larities, we introduce the flux transport dynamo model, the currently most successful theoretical model for explaining the

11-year sunspot cycle. Then we analyze the respective roles of nonlinearities and random fluctuations in creating the

irregularities. We also discuss how it has recently been realized that the fluctuations in meridional circulation also can be a

source of irregularities. We end by pointing out that fluctuations in the poloidal field generation and fluctuations in

meridional circulation together can explain the occurrences of grand minima.
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1. Introduction

The number of sunspots seen on the solar surface rises and

falls with a period of about 11 years. This 11-year cycle of

sunspots is one of most intriguing natural cycles which is

affecting our lives in many ways as our society becomes

more dependent on technology. Violent explosions known

as solar flares occur more frequently when there are more

sunspots. Apart from producing the beautiful polar aurorae,

a large flare can disturb the ionosphere causing disruptions

in radio communication, can damage electronics in man-

made satellites, can make airlines flights near geomagnetic

poles particularly hazardous and can even trip power grids.

On 13 March 1989, a large part of eastern Canada had a

power blackout caused by a powerful solar flare.

Figure 1 shows the sunspot number as a function of time

from 1610. Galileo and some of his contemporaries were the

first scientists to study sunspots systematically. The initial

entries in Fig. 1 are based on their records. Then, for nearly a

century, sunspots were rarely seen—a period known as the

Maunder minimum. Afterwards the sunspot number has

varied periodically with a rough period of about 11 years,

although we see a considerable amount of irregularity. Some

cycles are stronger than the average and some are weaker.

After the discovery of the sunspot cycle by Schwabe in

1843 [1], for a long time there was no theoretical expla-

nation for it. When Hale discovered in 1908 [2] that a

sunspot is a site of a concentrated magnetic field (about 0.3

T, only a little bit weaker than the strongest magnetic fields

produced in our laboratories by large electromagnets), it

became clear that the 11-year sunspot cycle is essentially

the magnetic cycle of the Sun. It may be mentioned that

Hale’s discovery of magnetic fields in sunspots was a truly

momentous discovery in the history of physics because that

was the first time somebody found a conclusive evidence of

large-scale magnetic fields outside the Earth’s environ-

ment. Now we know that magnetic fields are ubiquitous in

the astronomical universe.

It is now generally accepted that a magnetohydrody-

namic (MHD) process known as the dynamo process is

responsible for generating magnetic fields in astrophysical

systems. The foundations of dynamo theory were laid

down in a 1955 classic paper by Parker [3], in which he

derived the dynamo equation arising out of MHD turbu-

lence subject to rotation. Afterwards, Steenbeck et al. [4]

developed the mean field formalism of dynamo theory in a

more systematic way.

The particular dynamo process responsible for produc-

ing the 11-year sunspot cycle is called the flux transport

dynamo process. Invoking some early ideas due to Bab-

cock [5] and Leighton [6], the flux transport dynamo theory
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was first formulated by Wang et al. [7], Choudhuri et al. [8]

and Durney [9]. This theory has been remarkably suc-

cessful in providing theoretical explanation of various

aspects of the sunspot cycle. At first, efforts have been

focussed on explaining regular aspects of the sunspot cycle.

After the successful modelling of the regular aspects, the

thrust of research in the last few years has been to apply the

flux transport dynamo model to study the irregularities of

the sunspot cycle.

An earlier review by the present author [10] summarized

the basic observational data about the sunspot cycle and

then discussed how the flux transport dynamo model was

developed to explain these observational data. Although we

briefly summarize the salient features of the flux transport

dynamo, we do not want to repeat the full discussions of

the previous review. So we would urge the readers to read

this previous review before reading the present review. The

present review can be regarded as a continuation of the

previous review. The main aim of the present review is to

discuss how the irregularities of the sunspot cycle are

modelled with the flux transport dynamo. Although a little

bit of discussion of this subject can be found at the end of

the previous review [10], some very important develop-

ments took place in this field after that review was written.

These very recent developments are highlighted throughout

the present review.

2. Some aspects of observational data

The earlier review [10] provided a summary of the regular

periodic aspects of the sunspot cycle (Hale’s polarity law,

butterfly diagram). So we have not discuss those topics

here. We merely focus our attention on the irregularities of

the sunspot cycle. If all the irregularities were really

‘irregular’ in the true sense, then it would have been very

difficult to develop any theoretical understanding about

them. However, one can discern certain patterns within the

irregularities which give us valuable clues how these

irregularities may arise and how they can be modelled

theoretically.

To discover patterns within the irregularities of the

sunspot cycle, one would like to have as much data about

the irregularities as possible, so that statistical inferences

become meaningful. We have collected actual sunspot

records for about four centuries, although the records

become less reliable as we go earlier than the nineteenth

century. One important question is whether we have other

proxies of sunspot activity through which we can infer

about sunspot cycles in the past even without actual sun-

spot records. When the sunspot activity is low, the mag-

netic field in the solar wind becomes weaker, allowing

more cosmic ray particles to reach the Earth and to produce

more of the radioactive nuclei 10Be and 14C by interacting

with air molecules. If we can infer what the concentrations

of 10Be and 14C in the atmosphere were at earlier times,

then from that we can reconstruct a history of sunspot

cycles in the past. The atmospheric concentration of 14C in

the past can be inferred by analyzing old tree rings,

whereas the atmospheric concentration of 10Be in the past

can be inferred from the polar ice cores which have formed

over many years. It has now been possible to reconstruct

the history of sunspot activity for the past 11,000 years.

At the first sight, the strengths of different sunspot

cycles as seen in Fig. 1 may appear to vary randomly. Let

us first discuss if there are any long-term patterns. Sunspot

cycles have been numbered from the middle of the eigh-

teenth century, the present cycle being cycle 24. For sev-

eral cycles from cycle 10 (beginning around 1855), the odd

cycle has been stronger than the previous even cycle, a

pattern at last broken by cycle 23 which turned out to be

weaker than cycle 22. This is called the Gnevyshev–Ohl

rule [11], though departures from this rule are known.

Apart from this two-cycle pattern, it is often claimed that

there is a modulation of cycle amplitudes involving eight

cycles, often called the Gleissberg cycle. From the limited

data we have, it is very difficult to either prove or disprove

the existence of the Gleissberg cycle. What is clear, how-

ever, is that sometimes the sunspot activity may almost

disappear for many years and several cycles may go

missing, like what happened during the Maunder mini-

mum. Such events are called grand minima. On recon-

structing the sunspot activity for several millenia, it is now

clear that the Maunder minimum was not unique. It is

estimated that there have been 27 such grand minima

during the last 11,000 years [12].

Apart from these patterns involving the amplitudes of

different cycles, there are other patterns within the irreg-

ularities of sunspot cycles. The earlier review [10] dis-

cussed in detail the possible correlation between the polar

field during the sunspot minimum and the strength of next

cycle. If such a correlation does exist (which seems to be

the case from the limited data we have), then that gives a

powerful tool for predicting the strength of a sunspot cycle
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Fig. 1 A plot of the yearly averaged sunspot number from 1610 to the

present time
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before its beginning, once we know the strength of the

polar field during the previous sunspot minimum. The last

interesting pattern to which we wish to draw the readers’

attention is what is called the Waldmeier effect [13]. It

appears that strong cycles rise fast, whereas weak cycles

rise more slowly. In other words, there is an anti-correla-

tion between the rise times of the cycles and their strengths.

Within the last few years, attempts are being made to

explain these patterns of irregularities with the flux trans-

port dynamo model. After discussing the basic model in the

next section, we shall come to the theoretical modelling of

irregularities from Sect. 4.

3. Flux transport solar dynamo

We now give a very brief summary of the flux transport

dynamo model of the sunspot cycle. We emphasize again

that this discussion is not meant to be self-explanatory. It is

not meant to be accessible to readers without any previous

knowledge of the subject. Readers without any previous

knowledge are urged to read the previous review [10]

before proceeding further.

The toroidal and the poloidal components of the Sun’s

magnetic field are supposed to sustain each other through a

feedback loop. The differential rotation of the Sun (which

is now fully mapped by helioseismology) stretches out the

poloidal field to produce the toroidal field. This primarily

takes place at the bottom of the solar convection zone (at

r ¼ 0:7R�) where the differential rotation is concentrated.

To complete the dynamo loop, the poloidal field has to be

generated back from this toroidal field. How this happens is

more subtle. The original idea of Parker [3] and Steenbeck

et al. [4]—often called the a-effect—was that the toroidal

field is twisted by the helical turbulence of the convection

zone to produce the poloidal field. This is possible only if

the toroidal field does not have energy density more than

the energy density of turbulence. The condition for this is

that the toroidal field should not be stronger than 104 G.

The idea of the toroidal field being twisted by helical tur-

bulence had to be questioned when detailed calculations of

the rise of the toroidal field by magnetic buoyancy to form

sunspots were carried out on the basis of the thin flux tube

equation [14, 15]. The simulations of Choudhuri and Gil-

man [16], Choudhuri [17], D’Silva and Choudhuri [18] and

Fan et al. [19] have suggested that the toroidal field at the

bottom of the convection zone has to be as strong as 105 G

in order to match different aspects of observations. The a-

effect cannot operate on such a strong field.

An alternative idea of the poloidal field generation goes

back to Babcock [5] and Leighton [6]. The toroidal field

rising due to magnetic buoyancy produces bipolar sunspots

on the solar surface with tilts caused by the Coriolis

force—an effect known as Joy’s law. When a tilted bipolar

sunspot decays, the two opposite magnetic polarities spread

preferentially in slightly different latitudes. Many of us

now believe that the poloidal field generation in the solar

dynamo takes place due to this Babcock–Leighton mech-

anism. The Sun has a meridional circulation which is

poleward near the surface and advects this poloidal field

poleward [20–23]. This meridional circulation also plays a

crucial role in the solar dynamo. The kind of dynamo in

which the poloidal field is generated by the Babcock–

Leighton mechanism and the meridional circulation plays a

critical role is called the flux transport dynamo.

Figure 2 is a cartoon explaining how the flux transport

dynamo operates within the solar convection zone. The

toroidal field is generated at the bottom of the convection

zone where the strong differential rotation discovered by

helioseismology stretches out the poloidal field to generate

the toroidal field. Then this toroidal field rises to the solar

surface due to magnetic buoyancy to produce the tilted

bipolar sunspots. The decay of these tilted bipolar sunspots

then gives rise to the poloidal field near the surface by the

Babcock–Leighton mechanism. The meridional circulation

is also indicated in Fig. 2. We observe the meridional

circulation to be poleward in the top layers of the con-

vection zone. In order to conserve mass, the meridional

circulation has to be equatorward deeper down. It is gen-

erally assumed in flux transport dynamo models that the

equatorward flow is at the bottom of the convection zone,

although this is not yet confirmed from observations. The

poloidal field produced near the surface is advected

++ Strong Differential Rotation

.....  Babcock−Leighton Process

              Magnetic Buoyancy

             Meridional Circulation

Fig. 2 A cartoon explaining how the flux transport dynamo works
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poleward by the poleward meridional circulation there,

whereas the toroidal field produced at the bottom of the

convection zone is advected equatorward by the equator-

ward meridional circulation there. This provides the theo-

retical explanation of both the observed poleward drift of

the surface magnetic field (outside active regions) and the

equatorward migration of the sunspots which form from the

toroidal field. While the basic idea of the flux transport

dynamo was given in an early paper by Wang et al. [7], the

first two-dimensional models were constructed by Cho-

udhuri et al. [8] and Durney [9].

A numerical code SURYA was developed in our group

in Indian Institute of Science to solve the basic equations of

the flux transport dynamo [24, 25] and was made public

from 2005. A comparison of the observational data shown

in Fig. 2 of [10] with theoretical results shown in Fig. 10 of

[25] makes it clear that the flux transport dynamo is rea-

sonably successful in reproducing various aspects of the

periodic behaviour of the sunspot cycle. Apart from solving

the solar dynamo problem, the code SURYA has also been

modified to study the accretion of matter on magnetized

neutron stars [26, 27]. It may be noted that a flux tube

approach has to be combined with the mean field dynamo

equation to have a more complete understanding of the

magnetic field dynamics within the solar convection zone

[28]. For example, we have to consider the wrapping of

poloidal field lines around rising flux tubes to explain how

the observed current helicity of sunspots arise [29, 30]. The

flux transport dynamo model has also been applied to

model the back-reactions of the dynamo-generated mag-

netic field such as torsional oscillations [31].

There have been some recent claims that the equator-

ward reverse flow of the meridional circulation occurs at a

shallow depth and not at the bottom of the convection zone

as usually assumed in the flux transport dynamo model [32,

33]. If these claims are corroborated by other independent

studies and turn out to be true, then we have to address the

question whether the flux transport dynamo can work with

a shallow meridional circulation. Guerrero and de Gouveia

Dal Pino [34] considered a shallow cell of meridional

circulation with equatorward turbulent pumping in the

region below it and succeeded in getting realistic butterfly

diagrams. Whether such equatorward pumping exists is

questionable. If there is just a shallow cell of meridional

circulation and nothing below it, then the flux transport

dynamo cannot work. However, recently Hazra et al. [35]

have shown that many of the attractive features of the flux

transport dynamo are retained if, below the shallow cell of

meridional circulation at the top of the convection zone,

there are additional cells such that there is an equatorward

meridional circulation at the bottom of the convection

zone. Thus, even if the meridional circulation has a return

flow at a shallow depth, the flux transport dynamo can

presumably still work as long as there is an appropriate

equatorward flow at the bottom of the convection zone.

The original flux transport dynamo model of Choudhuri

et al. [8] leads to two offsprings: a high diffusivity model

and a low diffusivity model. The diffusion times in these two

models are of the order of 5 and 200 years respectively. The

high diffusivity model has been developed by a group

working in IISc Bangalore (Choudhuri, Nandy, Chatterjee,

Jiang, Karak), whereas the low diffusivity model has been

developed by a group working in HAO Boulder (Dikpati,

Charbonneau, Gilman, de Toma). The differences between

these models have been systematically studied by Jiang et al.

[36] and Yeates et al. [37]. Both these models are capable of

giving rise to oscillatory solutions resembling solar cycles.

However, when we try to study the irregularities of the

cycles, the two models give completely different results. We

need to introduce fluctuations to cause irregularities in the

cycles. In the high diffusivity model, fluctuations spread all

over the convection zone in about 5 years. On the other

hand, in the low diffusivity model, fluctuations essentially

remain frozen during the cycle period. Thus the behaviours

of the two models are totally different on introducing fluc-

tuations. As we shall see in the next three Sections, only the

high diffusivity model can provide explanations for certain

aspects of sunspot cycle irregularities. The high diffusivity

also helps in establishing the dipolar parity of the solar

magnetic field [25, 38] and can explain the lack of signifi-

cant hemispheric asymmetry [39, 40].

4. Nonlinearities versus random fluctuations

The magnetic fields produced by the dynamo can react

back on the velocity fields driving the dynamo action. This

leads to nonlinearities in the mathematical theory. It is well

known that nonlinear dynamical systems can show com-

plicated chaotic behaviours and one possibility is that

irregularities of the sunspot cycle are just a manifestation

of such chaotic behaviour. However, the mean field theory

of the dynamo involves averaging over turbulence and we

always have fluctuations around the mean. These random

fluctuations also may be the source of irregularities. For

some time, there has been a debate in this field whether the

irregularities of the sunspot cycle are primarily due to

nonlinear chaos or due to random fluctuations. While we

now think that there are signatures of both the effects, it

seems that the really large irregularities like the grand

minima are caused by random fluctuations.

Let us point out why many of us think that the largest

irregularities of the sunspot cycle are not due to nonlinear

chaos. The simplest way of capturing the effect of the

nonlinear feedback in a kinematic dynamo model (in which

the fluid flow equations are not solved) is to consider a
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quenching of the a parameter (the crucial parameter in the

dynamo generation of magnetic fields) as follows:

a ¼ a0

1þ jB=B0j2
; ð1Þ

where B is the mean magnetic field produced by the

dynamo and B0 is the value of magnetic field beyond which

nonlinear effects become important. There is a long history

of dynamo models studied with such quenching [41–43]. In

most of the nonlinear calculations, however, the dynamo

eventually settles to a periodic mode with a given ampli-

tude rather than showing sustained irregular behaviour. The

reason for this is intuitively obvious. Since a sudden

increase in the amplitude of the magnetic field would

diminish the dynamo activity by reducing a given by

Eq. (2) and thereby pull down the amplitude again (a

decrease in the amplitude would do the opposite), the

a-quenching mechanism tends to lock the system to a

stable mode once the system relaxes to it. Only by using

somewhat unusual kinds of nonlinearities, usually with

large time delays, it is sometimes possible to get chaotic

behaviour in the system. Although nonlinearities may not

produce sustained chaotic behaviour, It has been suggested

that the Gnevyshev–Ohl rule is caused by a period dou-

bling due to nonlinearities [44, 45] and there is no other

good theoretical explanation for it. Presumably the non-

linearities play some role in producing such effects as the

Gnevyshev–Ohl rule, but we believe that they are not the

main cause behind the large irregularities of the sunspot

cycle.

Now let us come to the possibility that the irregularities

of the sunspot cycle are primarily caused by random fluc-

tuations, as suggested first by Choudhuri [46] and Hoyng

[47]. The crucial issue is to figure out the nature of random

fluctuations in the flux transport dynamo. Choudhuri et al.

[48] have identified the Babcock–Leighton mechanism of

poloidal field generation as the main source of random

fluctuations. This mechanism depends on the tilts of bipolar

sunspot pairs. While the average tilts are given by Joy’s

law, one finds a large scatter around this average, pre-

sumably produced by the fact that the rising flux tubes are

buffeted by turbulence in the convection zone [49]. This

scatter around Joy’s law produces fluctuations in the po-

loidal field generation process, ultimately giving rise to

irregularities in the dynamo mechanism. In the high dif-

fusivity flux transport dynamo model, we can theoretically

explain the observed correlation between the polar field

during the sunspot minimum and the strength of the next

cycle if the irregularities of cycles primarily arise due to

fluctuations in the Babcock–Leighton mechanism, but we

do not get this correlation in the low diffusivity model [36].

Since the origin of this correlation in high diffusivity model

has been discussed in detail in the earlier review [10], we

shall not get into a detailed discussion of this subject here,

except to mention that the theoretical explanation of this

correlation lends support simultaneously to the high dif-

fusivity dynamo model and to the idea that the fluctuation

in the Babcock–Leighton mechanism is the major cause of

irregularities in the sunspot cycle. Recent analyses of the

sunspot tilt data by different groups also provide strong

support to the scenario outlined above [50, 51].

We have already mentioned that the correlation between

the polar field during a sunspot minimum and the strength

of the next cycle provides a mechanism for predicting

future cycles. We shall only make some comments on this.

On the basis of the observation that the polar field was

rather weak during the last sunspot minimum, several

groups predicted a few years ago that the present cycle 24

would be rather weak [52, 53]. One crucial question at that

time was whether theoretical solar dynamo models could

be used to make a prediction. During the sunspot minimum

before the previous cycle 23 (in the mid-1990s), solar

dynamo models were still too primitive for this purpose.

The sunspot minimum before the present cycle 24 was the

first sunspot minimum during which the solar dynamo

models had reached a certain level of sophistication to

make such predictions. Dikpati and Gilman [54] have used

their low diffusivity model to predict that the cycle 24

would be the strongest cycle in the last half century. On the

other hand, Choudhuri, Chatterjee and Jiang [48] have

used their high diffusivity model to predict that the

cycle 24 will be the weakest cycle in nearly a century. This

is a rather robust prediction of this high diffusivity model,

because this model produces a strong correlation between

the polar field during the sunspot minimum and the next

cycle, and the fact that the polar field was very weak

during the last sunspot minimum was incorporated in the

theoretical model for this prediction work. Figure 3 shows

the present status of the sunspot number data with the two

theoretical predictions indicated. It is clear that the

observational data is consistent with the prediction of

Choudhuri et al. [48], making this the first successful

prediction of a cycle from a theoretical dynamo model in

the history of this subject.

Lastly, we come to the question whether fluctuations in

the poloidal field generation can produce grand minima.

When the poloidal field at the end of a cycle falls to a

very low value due to these fluctuations, Choudhuri and

Karak [55] found that the dynamo can be pushed into a

grand minimum. In fact, they were able to construct an

example of a grand minimum having the broad features of

the Maunder minimum. We thus conclude that the fluc-

tuations in the Babcock–Leighton mechanism for gener-

ating the poloidal field is a possible mechanism for

producing grand minima—especially if the dynamo is not

too supercritical [56].
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5. Fluctuations in meridional circulation

Until about 5–6 years ago, it was not generally recognized

that there is another important source of sunspot cycle

irregularities: fluctuations in the meridional circulation.

The period of the flux transport dynamo is approximately

given by the time taken by the meridional circulation at the

bottom of the convection zone to move from higher lati-

tudes to lower latitudes. A faster meridional circulation

would make the cycle period shorter—the period of the

flux transport dynamo varying roughly as the inverse of the

meridional circulation speed. Since the meridional circu-

lation determines the period of the flux transport dynamo, it

is not surprising that any fluctuations in meridional circu-

lation would have an effect on the flux transport dynamo. It

has been found recently that the meridional circulation has

a periodic variation with the solar cycle, becoming weaker

at the time of sunspot maximum [57–59]. Presumably the

Lorentz force of the dynamo-generated magnetic field

slows down the meridional circulation at the time of the

sunspot maximum. Karak and Choudhuri [60] found that

this quenching of meridional circulation by the Lorentz

force does not produce irregularities in the cycle, provided

the diffusivity is high as we believe. Then the question

arises whether there are other kinds of fluctuations in the

meridional circulation apart from these cyclic modulations.

We have reliable observational data on the variations of

meridional circulation only for a little more than a decade. To

draw any conclusions about the variations of meridional

circulation at earlier times, we have to rely on indirect

arguments. If we assume the cycle period to go inversely as

meridional circulation, then we can use periods of different

past solar cycles to infer how meridional circulation has

varied with time in the last few centuries. On the basis of such

considerations, it appears that the meridional circulation had

random fluctuations in the last few centuries with correlation

time of the order of 30–40 years [61]. We now discuss the

effects that these random fluctuations of meridional circu-

lation may have on the dynamo. Based on the analysis of

Yeates et al. [37], we can easily see that dynamos with high

and low diffusivity will be affected very differently. Suppose

the meridional circulation has suddenly fallen to a low value.

This increases the period of the dynamo and lead to two

opposing effects. On the one hand, the differential rotation

have more time to generate the toroidal field and try to make

the cycles stronger. On the other hand, diffusion also have

more time to act on the magnetic fields and try to make the

cycles weaker. Which of these two competing effects wins

over depend on the value of diffusivity. If the diffusivity is

high, then the action of diffusivity is more important and the

cycles become weaker when the meridional circulation is

slower and the cycle period is longer. The opposite happens

if the diffusivity is low.

The important question now is if there is any kind of

observational data to indicate whether the cycles become

weaker (which will happen for high diffusivity) or stronger

(which happens for low diffusivity) when the meridional

circulation is slower resulting in longer cycles. The Wald-

meier effect discussed in Sect. 2 provides precisely this kind

of observational data. The rise time of the sunspot cycle

roughly goes as the duration of the cycle. If the meridional

circulation is slower, then the cycle is longer and the rise

time is also longer. According to the Waldmeier effect, the

longer cycle tends to be weaker in strength. This happens

only if the turbulent diffusivity is high. Karak and Cho-

udhuri [61] were able to explain the Waldmeier effect on

the basis of the high diffusivity model, whereas the low

diffusivity would give the opposite of the Waldmeier effect.

The success in explaining the Waldmeier effect is another

feather in the cap of the high diffusivity model.

Since a slowing of the meridional circulation would

make the cycles weaker, a question that comes before us is

whether a sufficient slowing of the meridional circulation

can cause a grand minimum. Karak [62] indeed found that

the flux transport dynamo can be pushed into a grand

minimum if the meridional circulation drops to 0.4 of its

normal value. This is clearly another possible mechanism

for producing a grand minimum.

6. A theoretical model of grand minima

From the discussions in the previous two sections, it should

be clear that a grand minimum can be caused by two
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Fig. 3 The monthly sunspot number plot for the last few years,

indicating the theoretical predictions. The upper star is the peak of

cycle 24 predicted by Dikpati and Gilman [54], whereas the lower

star is what was predicted by Choudhuri et al. [48]. The circle on the

horizontal axis indicates the time when these predictions were made

(in 2006)
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means: if the poloidal field produced at the end of cycle is

very weak as a result of fluctuations in the Babcock–

Leighton mechanism and if the meridional circulation falls

to a very low value due to its fluctuations. Presumably the

grand minima arise due to the combined effect of both

these kinds of fluctuations, as shown by Choudhuri and

Karak [63]. Let c be the normalized strength of the polar

field (i.e. the strength of the polar field divided by its

average value over many cycles) at the end of a cycle and

let v0 be the amplitude of the meridional circulation. Fig-

ure 4 shows the two-dimensional parameter space of c
versus v0. The condition at the beginning of a sunspot cycle

is clearly represented by a point in this two-dimensional

parameter space. Choudhuri and Karak [63] found that the

dynamo is pushed into a grand minimum if the condition at

the beginning of the cycle corresponds to the shaded region

of the parameter space. What is the probability of this

happening?

Presumably both the fluctuations we are considering

would be of Gaussian nature. Then the joint probability

that the polar field strength at the end of a cycle lies in the

range c, cþ dc and the amplitude of the meridional cir-

culation at the same time lies in the range v0, v0 þ dv0 is

given by

Pðc; v0Þdcdv0 ¼
1

rv

ffiffiffiffiffiffi

2p
p exp �ðv0 � v0Þ2

2r2
v

" #

1

rc

ffiffiffiffiffiffi

2p
p exp �ðc� 1Þ2

2r2
c

" #

dc dv0:

ð2Þ

The probability that the condition at the beginning of a

cycle lies in the shaded region of Fig. 4 is obtained by

integrating the double Gaussian given by Eq. (2) over this

region. To carry on this integration, we need values of rv

and rc, which are the widths of these Gaussians. Choudhuri

and Karak [63] realized that these can be obtained from the

observational data of the last 28 cycles. The periods of

these cycles give the values of the meridional circulation

during these cycle, from which the probability distribution

function of the meridional circulation can be constructed.

Since strengths of the cycles are correlated with the polar

field strength c at the beginning of the cycle, the strengths

of the last 28 cycles can be used to construct the probability

distribution function of c. Although we would not expect a

very good Gaussian fit from a set of 28 data points, Cho-

udhuri and Karak [63] found that the fits were not too bad

and could estimate the values of rv, rc. On carrying out the

integration of the double Gaussian over the shaded region

in Fig. 4, Choudhuri and Karak [63] found the value to be

1.7 %. This means that 17 cycles out of 1,000 cycles (in

11,000 years) would have conditions appropriate for grand

minima at their beginnings. This is remarkably close to the

observational data that there had been 27 grand minima in

the last 11,000 years. In fact, in actual runs of the dynamo

code with fluctuations given by the double Gaussian (2),

Choudhuri and Karak [63] typically found about 24–30

grand minima in a run spanning 11,000 years.

While this may seem like a very encouraging result, one

aspect of grand minima still remains completely shrouded

in mystery. If there are no sunspots at all during a grand

minimum, one important question is whether the Babcock–

Leighton mechanism which depends on the existence of

tilted bipolar sunspots can operate at all. If the Babcock–

Leighton mechanism is not operative, then some mecha-

nism has to build up the poloidal field so that the Sun can

eventually come out of the grand minimum. If the magnetic

field during the grand minimum becomes sufficiently weak,

then one possibility is that the a-effect originally envisaged

by Parker [3] and Steenbeck et al. [4] becomes operative.

Karak and Choudhuri [64] have done some explorations of

this. The results are inconclusive. While we now have

some idea how the Sun gets pushed into grand minima, we

have very little understanding how the Sun gets out of a

grand minimum after falling into one.

7. Conclusion

Starting from mid-1990s the flux transport dynamo model

has been emerging as an attractive model of the 11-year

sunspot cycle. At first, explaining the regular features of

the cycle theoretically was the main objective of this

model. Only within the last few years, this model has been

used increasingly to explain the irregularities of the sunspot

cycle. The main aim of this review is to summarize this

recent phase of research in this field. While nonlinearities

11 12 13 14 15 16 17 18 19 20 21 22 23
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Fig. 4 The parameter space indicating the normalized strength c of

the poloidal field and the amplitude of the meridional circulation, the

shaded region being the part to the parameter space giving rise to

grand minima
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may play some role in producing the cycle irregularities, it

appears that the fluctuations in the Babcock–Leighton

mechanism and the fluctuations in the meridional circula-

tion are the main causes behind the sunspot cycle irregu-

larities. The success in explaining the various statistical

aspects of grand minima on the basis of these two kinds of

fluctuations introduced into our theoretical model gives us

confidence that we are probably on the right track.
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Peñuela Astron. Astrophys. 518 7 (2010)

[51] L L Kitchatinov and S V Olemskoy Astron. Lett. 37 656 (2011)

[52] L Svalgaard, E W Cliver and Y Kamide Geo. Res. Lett. 32
L01104 (2005)

[53] K Schatten Geo. Res. Lett. 32 L21106 (2005)

[54] M Dikpati and P A Gilman Astrophys. J. 649 498 (2006)

[55] A R Choudhuri and B B Karak Res. Asron. Astrophys. 9 953

(2009)

[56] S V Olemskoy, A R Choudhuri and L L Kitchatinov Astron.

Rep. 57 458 (2013)

[57] D-Y Chou and D-C Dai Astrophys. J. 559 L175 (2001)

[58] D H Hathaway and L Rightmire Science 327 1350 (2010)

[59] S Basu and H M Antia Astrophys. J. 717 488 (2010)

[60] B B Karak and A R Choudhuri Solar Phys. 278 137 (2012)

[61] B B Karak and A R Choudhuri Mon. Notic. Roy. Astron. Soc.

410 1503 (2011)

[62] B B Karak Astrophys. J. 724 1021 (2010)

[63] A R Choudhuri and B B Karak Phys. Rev. Lett. 109 171103

(2012)

[64] B B Karak and A R Choudhuri Res. Asron. Astrophys. 13 1339

(2013)

884 A R Choudhuri


	The irregularities of the sunspot cycle and their theoretical modelling
	Abstract
	Introduction
	Some aspects of observational data
	Flux transport solar dynamo
	Nonlinearities versus random fluctuations
	Fluctuations in meridional circulation
	A theoretical model of grand minima
	Conclusion
	Acknowledgments
	References




