JengaZero: Manual Gameplay PROJECT REPORT

Learning to play Jenga

JengaZero: Manual GamePlay

LEARNING TO PLAY Jenga

JengaZero: MANUAL GAMEPLAY

REPORT
Bhavya Sharma Jaya Kumar Alageshan Animesh Kuley
Delhi Public School(DPS) Department of Physics, Department of Physics,
Gandhinagar, Gujarat, Indian Institute of Science, Indian Institute of Science,
India - Bangalore, India - 560012 Bangalore, India - 560012
sarvbhavya@gmail.com jayaka@iisc.ac.in akuley@iisc.ac.in

September 28, 2022

ABSTRACT

We develop JengaZero, a simplified version of Jenga game in Unity3D with manual gameplay. We
use Unity game engine to build the Jenga blocks, and incorporate collision and static-, kinetic-
friction between the blocks, in the presence of gravity. JengaZero forms the base for our studies on
JengaAlpha where we intent to use machine learning (in particular reinforcement learning) methods
to play JengaZero and extract the optimal strategies.

Keywords Jenga - JengaZero - Reinforcement learning

1 Introduction

Figure 1: Initial organization of the Jenga blocks.

Jenga is a board game developed by designer and author Leslie Scott, where players take turns removing one block at
a time from a tower constructed of 54 blocks. The removed block is then placed on top of the tower, in the process

JengaZero: Manual Gameplay PROJECT REPORT

reducing the mechanical stability of the structure. A typical Jenga game has 54 blocks, with each block of dimension
L x L/3 x L/5. The game is initialized by arranging the blocks into a solid rectangular tower of 18 layers, with three
blocks per layer. The blocks within each layer are oriented in the same direction, with their long sides touching, and are
perpendicular to the ones in the layer immediately below.

The players take turns removing one block from any level below the highest completed one and placing it horizontally
atop the tower, perpendicular to any blocks on which it is to rest. Once a level contains three blocks, it is complete and
may not have any more blocks added to it. A turn ends when the next player in sequence touches the tower or when 10
seconds have elapsed since the placement of a block, whichever occurs first. The game ends when any portion of the
tower collapses, caused by either the removal of a block or its new placement. The last player to complete a turn before
the collapse is the winner.

2 JengaZero

JengaZero is a simplified version of the Jenga game, where only one player is allowed to play at a time without replacing
the block that is removed on the top of the stack. We award points for each block removed and the game ends when the
tower collapses. The player who manages to accumulate the most points by the end of the game wins.

Our goal in development of JengaAlpha is to implement an algorithm that can find the optimal sequence of blocks to
remove and maximize the total points.

3 Game development in Unity

The Unity game engine was selected as a base for the physics and collision calculation for the Jenga tower and rendering
of the graphics as it provides real-time rendering and simulation.

3.1 Version 0.1

V0.1 establishes a base structure for the game to be built upon with elements such as a moving camera; for the base
structure, the layout of the play area and Jenga tower was built from scratch. To keep the Jenga tower as authentic as
possible, we used 54 blocks in a ratio of 1.5 units x 2.5 units X 7.5 units per block.

Figure 2: Base Game V0.1

JengaZero: Manual Gameplay PROJECT REPORT

3.1.1 Rigidbody

The Rigidbody function was applied to all blocks to let them interact with each other and their surroundings. Each
block was given a variable value of mass which allows for fine-tuning of gravity and continuous collision detection that
prevents blocks from phasing into one another.

3 Transform

Position X0
Rotation X0
Scale X 2.5

B Cube (MeshFilter)
Mesh H Cube

B8 v Mesh Renderer
8§ v Box Collider

Edit Collider

Is Trigger
Material None (Physic Material) ®
Center
X0 Y O
Size
X1 i 1

4 Rigidbody

Mass

Drag
Angular Drag
Use Gravity
Is Kinematic
Interpolate None
Collision Detection Continuous
Constraints
Freeze Position

Freeze Rotation

Figure 3: Properties of an individual block in the tower

3.1.2 Camera

The camera acts as the main medium through which the player interacts with the game. Using the in-built camera from
Unity, a simple script in C# was made that allowed allowed the user to move the camera using the mouse input. The
idea behind the camera-based input system is that the camera references center of the screen (Denoted by a circle known
as the crosshair). When the mouse is hovered over a block by altering the X and Y axis of the mouse input (moving the
mouse on a surface), the user can hold the left click to pick up and move the mouse to drag the block outside the tower
to score points.

Cameramovement.cs

JengaZero: Manual Gameplay PROJECT REPORT

The main script responsible for camera movement is called Cameramovement.cs (refer to figure).

Using the in-built mouse movement float values of mouseX and mouseY, the program is able to calculate and adjust
the positioning of the camera with respect to its 'Transform’ function (The Transform function allows the script to
reference the camera’s positional values once assigned in Unity).

The mouse movement is calculated on a frame-by-frame basis in the 'Update’ function of the script, and thus the
speed of the mouse varies relative to the processing speed of the hardware being used. To prevent this dependency
of mouse speed with respect to game framerate, the output float values of mouseX and mouseY were multiplied by
Time.deltaTime (it is the interval in seconds from the last frame to the current one). This allows the speed of the game to
be independent of the framerate.

This script also hides and locks the cursor, preventing the user from accidentally clicking outside the game window.
Lastly, the mouse sensitivity can be adjusted in-game by altering the value of the 'float mouseSensitivity’ higher or
lower than 100 (default value).

it mouseSensitivity = 100f;
blic Transform Camera;

C XRotation of;
yrotation of;

void Update()
{

Input.GetAxis("Mouse X") * mouseSensitivity * Time.deltaTime;
Input.GetAxis("Mouse Y") * mouseSensitivity * Time.deltaTime;

xRotation -= mouseY;
yrotation += mouseX;

transform.localRotation = Quaternion.Euler(xRotation, yrotation, of);

d Start()

Cursor.visible = false;
Cursor.lockState = CursorLockMode.Locked;

Figure 4: Camera Movement script

3.2 Version 0.3

V0.3 introduces basic User Interface (UI) elements, initial graphical improvements, and highlighting of selected blocks
via the camera.

3.2.1 Graphical Changes and Highlighting Blocks

We created two separate materials (textures or colors) for the Jenga tower that allow for better game-play visibility.
Alternating the block materials by having the central block on each floor be a different color made it easier to identify
the individual blocks throughout the tower.

The integration of materials allowed for an additional material to be created, which would be used as a selec-
tion material. A new script was created responsible for managing the highlighting of blocks called ’SelectionManager.cs’

SelectionManager.cs

Using the center of the screen as a reference point, this script replaces the material of the block in front of this point
with the selection material. The selection material would be vibrant relative to the rest of the scene, allowing for the
player to easily identify which block was going to be selected.

JengaZero: Manual Gameplay PROJECT REPORT

Figure 5: Game after Graphical Improvements

All functions of the SelectionManager script take place within the 'Update’ function, and thus it constantly checks per
frame whether the specified condition is valid or invalid; this allows for real-time highlighting for the player to visualize
which block can be picked up.

The script casts a raycast (ray) from the center of the camera and checks if the ray has hit a rigidbody; when the
rigidbody (in this case, a Jenga block) is hit, the script changes the block’s present material to the selection material
termed as "highlightMaterial’. Once the ray stops hitting the current rigidbody, it replaces the "highlightMaterial’ with
"defaultMaterial’.

The assignment of materials and interchanging of tags is handled by an empty object in the game scene called
"SelectionManager’.

3.2.2 Implementing basic User Interface components

All of the user interface components were added using the Unity Ul toolkit.

This version adds a point of reference in the center of the screen represented by a white dot known as the cross-hair; it
allows the user to determine where to move the mouse in order to select a desired block.

Any block in front of this point changes color with reference to the highlight script.

3.2.3 Limitation of Selection Script

In order to make the game look better, two separate materials were used for the Jenga tower (see @; however, the
selection manager script is only able to allocate one material as the replacement material.

This limitation of the script results in both shades of the tower being replaced by one, reversing the allocation of distinct
colors to better the in-game visibility. To overcome this issue, the next version introduced a new shading and rendering

method (see [3.3.1).

3.3 Version 0.5

V0.5 changes the shading and rendering system of the game. A system of picking up rigidbodies (blocks) from the
tower was also implemented.

Shading and rendering the game in different ways allows for more flexibility, giving a unique and interesting look to the
overall image.

3.3.1 Major Graphical Improvements

Due to the limitations of the block selection highlighting system, a custom rendering method was used in order to
simulate the game.

JengaZero: Manual Gameplay PROJECT REPORT

ystem.Collections .Generic;
UnityEngine;

MonoBehaviour

SerializeField] selectableTag =
erializeField] Material highligh
SerializeField] Material default

Transtorm _

Update()
if (_selection !=

ion.GetComponent<Renderer>();
defaultMaterial;

ray = Camera.main.ScreenPointToRay(Input.mousePosition);
RaycastHit hit;
if (Physics.Raycast(ray, hit))
I

selection = hit.transform;

Figure 6: Selection Manager script

This new system allowed for each object to have its own outline around the edges. The shade of the object color was
dependent upon the angle of observation, allowing for unique blends and different shades to appear as an object rotated.
Blocks that could not be selected had their own separate look, indicating that they were not interactable.

In order to achieve these results, multiple scripts work in tandem with some custom imported objects, graphical renderers,
and node maps. DepthNormalsFeature.cs, DecodeDepthNormals.hlsl, and OutlinesInclude.hlsl are the scripts alongside
the subgraphs of 'Outlines’, 'SobelFineTuning’, and the shader graphs 'SimpleOutlines’ and "TransparentOutlinesPass’
are responsible in working together and produce new graphical outputs for the revamped rendering system.

JengaZero: Manual Gameplay PROJECT REPORT

Figure 7: A block being highlighted

Figure 8: Introduction of UI elements

3.3.2 Dragging Rigidbodies

After implementing camera movement, a script that would allow the user to use an input (in this case, the left mouse
button for convenience) was created to emulate the action of picking up a Jenga block. The player can then move their
mouse input which causes the selected block to move; the user can then drag the block outside the tower and attempt to
do so without it toppling.

SC_DragRigidbody.cs handles all of the rigidbody (jenga block) movement operations.

SC_DragRigidbody.cs

This script samples the primary camera from the game and, by casting a raycast from the central point of the screen,
checks to see if an active rigidbody is obstructing the raycast. If the player presses the left-click button from the mouse
input, the desired rigidbody is locked to the crosshair (center of the screen). With the help of the camera movement

JengaZero: Manual Gameplay PROJECT REPORT

Figure 9: Limitation of Block Highliting Script

Figure 10: Game after Rendering Changes

script previously created, once the player changes the rational values of the camera, the highlighted block is also moved
accordingly by actively keeping it locked to the crosshair. The player can then release the block in a different location
by releasing the left-click button.

3.4 Version 0.7

This version includes the addition of a game failstate and a method to count the number of blocks that have been
removed from the tower.
The block counting method can be further developed into a score system.

3.4.1 Game Failstate

This version focuses on implementing a way that would allow the game to detect if the player had toppled the tower
over, or in other words, had lost the game.

The script called "CollisionDetection.cs” handles and executes the necessary actions to check if the layout for the
current game qualifies for the necessary requirements for an active failstate.

JengaZero: Manual Gameplay PROJECT REPORT

Figure 11: SimpleOutlines’ node map

CollisionDetection.cs

In order to check for if the tower has toppled over, a special algorithm was created which would check the number of
blocks falling within a short burst of time on loop while the game was running.

CollisionDetection.cs is able to achieve this with the help of 4 invisible rectangular blocks surrounding the tower acting
as walls. Each wall is not rendered so the player can not see them. All detectors lack the rigidbody function so they
do not collide with the falling blocks. Each detector also has the unity box collider function running which allows
CollisionDetection.cs to check if a rigidbody (block) has touched or entered a collider via the function "OnTriggerEnter".

OnTriggerEnter - Upon calling the function OnTriggerEnter, the variable "blocksFallen” increases per block
that falls and the "Logic" function is called after exactly 0.2 seconds of adding the blocks.

Logic - When the logic function is called with a delay of 0.2 seconds, the blocksFallen variable is reset to
1

Update - While this script is running, the Update function constantly checks if the variable blocksFallen is
greater than 2 and ends the game if the required condition is met.

In order to explain this algorithm in simpler terms, CollisionDetection.cs checks whether more than 2 blocks have fallen
from the tower in a 0.2 second span on loop.

When a player is removing blocks from the tower one at a time, under normal circumstances it would take more than
0.2 seconds to remove each block, hence the blocksFallen variable would reset each time a block is removed. However,
in the scenario of the when tower falls, multiple blocks would trigger the script within a time period smaller than 0.2
seconds and the algorithm would declare that the tower has fallen and the player has failed the game.

It is also worth mentioning that each of the detection walls have been offset from the edges of the tower from a few
units to prevent accidental failstate triggers when the tower leans in one particular direction but does not fall. The unit
offset has been optimised after several playthroughs as to not be too far or close to the tower in order to minimize the
limitations and errors of the CollisionDetection.cs script.

10

JengaZero: Manual Gameplay PROJECT REPORT

Figure 12: Outlines’ node map

3.4.2 Point System

A point system was implemented so that the player could keep track of how many blocks they had removed and provide
a gameplay element of letting the user beat their previous score.

More importantly, the point system allows the implementation of artificial intelligence mode in a simpler manner. The
central concept was, with the help of the score, the AI would be rewarded when it received a higher score without the
tower toppling (which would automatically set the score to 0 as a punishment).

This point based reward system allows for implementation of evolutionary based learning algorithms that run several
iterations of the same Al and choose the one that got the highest score. This process can be repeated multiple times,
replacing the new Al with the best one from the previous generation.

ScoreSustem.cs

The initial implementation of this system was to use the same cuboid detectors that were responsible for checking for a
valid gamestate, and re-purpose them in a manner where a fixed value would be added to a set variable dedicated to
keeping track of the score.

This method of trying to keep track of the score did not work because each cuboid added to the score assigned variable
separately, which resulted in 4 different outputs each time a block was detected by the script. This also meant that there
was no concrete value to the score variable as each detector only added the amount of points relative to the number of
blocks that enter it.

The process of counting the score was then changed to a system where the entire tower would reside within one big
invisible cuboid that would be slightly bigger than the 4 detectors used to check for a game failstate. This giant block
would provide data when a block was removed from its faces, thus allowing for a more concrete way of adding to the
score.

ScoreSustem.cs uses a function similar to "OnTriggerEnter” used by the CollisionDetection.cs script, called
"OnTriggerExit". This function allows the script to add 10 points to the scoreboard every time a rigidbody (in this
scenario a Jenga block) leaves the detection cube tower.

11

JengaZero: Manual Gameplay PROJECT REPORT

UnityEngine;
: MonoBehaviour

foi ount = sea;
hasPoints = F
Rigidbody selectedRigidbody;
Camera tar
TargetPosition;
originalRigidbe
selectionl

start()

targetcamera = GetComponent<Camera>();

update()

if (!targetCamera)
return;

if (Input.GetMouseButtonDown(a)

I

{

selectedrigidbe GetrRigidbodyFromMouseCl.

H

if (Input.cetmouseButtonup(e

I

{

selectedrigidbody =

Fixedupdate()

if (selectedrigidbody)
I

{
» Input.mousePosition. ctionDistance)) - originalScreenTargetPosition;
body . transform. posi) * fol mount * Time.deltaTime;

if (hit)
{
if (hitInfo.collider.gameobject.GetComponent<rigidbody>())

nDistance = vector3.pistance(, hitInfo.point});
nalscreenTargetPo: i a era. e oworldPoint(vector3(Input.mouserosition.x, Input.mousePosition.y, selectionpistanc
nalRigidbo i
urn hitInfo.

Figure 13: Picking Up Blocks Script

In addition, if the script detects the game has ended, the points automatically revert to 0. This feature has
been implemented in order to train artificial intelligence, since the Al’s goal is to reach the highest possible score within
a given time, this addition severely punishes the Al.

Lastly, the script makes all Jenga blocks non-interactable once the game has ended.

3.4.3 Bug Fixes for Score System

In terms of accuracy for detecting if blocks had been removed from the tower, the current score detection system worked
very well. However, there was one major issue plaguing the current implementation; a block could be picked up, moved
back and forth through the detector and the script would constantly add more points to the scoreboard even though
additional blocks were not being removed from the tower, hence acting as a game breaking exploit in the point detection
system.

To fix this issue, a separate script was created in order to tag blocks that had already moved through the detection
system and prevent the same blocks from being able to further change the score. This script responsible for this action
is "ScorePrevent.cs".

ScorePrevent.cs

This script essentially tags all blocks that leave the tower using a similar single block detector and marks them as
"GoneThrough" via a positive boolean value. In addition, the box collider of the removed block is disabled, which
prevents it from being detected by the scoredetector.

12

JengaZero: Manual Gameplay PROJECT REPORT

Figure 14: A block being picked up and removed from the tower

Figure 15: Tower with failstate

3.5 Version 0.8

This version focuses on improving upon the previously added user-interface elements and interlinking of previously
implemented features via a GameManager object.

3.5.1 GameManager

In order to interlink core game components such as conveying or referencing whether the game has ended, an empty
object called the game manager was created as a placeholder that contained all essential information that could be
passed on to it and then further referenced publicly in the game by other objects and scripts.

GamemanagerScript.cs

This game manager is also directly linked to a script named "GameManagerScript” that uses information passed on
from the "CollisionDetection.cs" script and checks if the game has entered an active failstate.

13

JengaZero: Manual Gameplay PROJECT REPORT

4

Figure 16: Tower in valid failstate

Figure 17: Invisible wall detectors required for block detection

Once the presence of a failstate is detected, this script is able to restart the game by loading the game scene from the
start where the score is reset to zero and the tower is returned to its original state.

The text "GAME OVER" is displayed when the tower topples over.

Lastly, the script restarts the game after 5 seconds of the tower toppling.

3.5.2 Score Based User Interface Improvements

A real time score counter was added to user interface. Other elements such as a "GAME OVER" screen were also
added. The script that updates the score in real time is called "ScoreTextScript.cs”.

ScoreTextScript.cs is executed in real time to reference the score being output from the points detector via
the scoresustem.cs script and pass it on as a string variable that can be read and changed to the score being currently
displayed.

Lastly, a few animations and other minor features were added to make the UI feel cohesive and fluid.

14

JengaZero: Manual Gameplay PROJECT REPORT

System.Collections;
System.Collections.Generic;
UnityEngine;

CollisionDetection : MonoBehaviour
blocksFallen = ef;
Score = ©f;
OnTriggerEnter()
blocksFallen = blocksFallen + 1;
Invoke("Logic™, 8.2f);
Update()
if (blocksFallen > 2)

{
FindObjectOfType<GameManagerScript>().EndGame();

Logic()

{
if (blocksFallen > 1)

{
blocksFallen = blocksFallen - 1;

}

Figure 18: CollisionDetection.cs

3.6 Version 0.9

The second last iteration of the base game version includes two essential features, one being a main menu that opens
when the game is run and allows the user to edit some game preferences, select game modes and close the game.
Secondly, pause menu which pauses the game and allows the user to travel across sub menus to implement changes into
the game such as some settings options, closing the game or moving back to the main menu was also added.

3.6.1 Main Menu

The main menu is displayed when the user executes the game’s main ".exe" file. It provides options of choosing which
game mode to enter, applying changes in the user settings and closing the game.

A separate scene was created that contained user interface elements in order to have a functioning main menu.

The main menu is a GUI driven and contains buttons and sub menus in order to traverse and find the desired function
within the menu.

All of the functions of the main menu are operated by "MainMenu.cs".

MainMenu.cs

15

JengaZero: Manual Gameplay PROJECT REPORT

40

Figure 19: Points being calculated based on number of removed blocks

Figure 20: Points Detector

This script runs when the game is launched. Once the game has loaded in the first scene known as the main menu scene
which contains all the user interface elements required for the main menu, it allows the player to move to the next scene
which is the game scene that contains all the game elements.

3.6.2 Pause Menu

The pause menu allows the user to pause and resume the game to increase the convenience of the game. It also provides
access to the main menu for directly closing the game.

The pause menu is activated when the user presses the esape key and no changes can occur within the game scene while
the pause menu is activated.

The pausemenu exists in the main game scene within the Ul canvas. It is a GUI based menu that uses submenus and
buttons in order to allow for user navigation.

All the components and fucntions of the pause menu are present within the PauseMenu.cs script.

PauseMenu.cs

16

JengaZero: Manual Gameplay PROJECT REPORT

System.Collections;
System.Collections.Generic;
UnityEngine;
UnityEngine.UI;

ScoreSustem : MonoBehaviour

Points = of;
GameManagerScript Gm;

OnTriggerExit()

Points = Points + 1ef;
Debug.Log(Points);
gameObject.layer = 2;

Update()

if (Gm.gameHasEnded
{

Points = Points - Points;

}

if (Gm.gameHasEnded
{

Invoke("LayerSwitch", 1f);

LayerSwitch()

gameObject.layer = 2;

Figure 21: ScoreSustem.cs

When the escape key is pressed while the game is running, this script is activated. There are 4 main functions that are
present within this script, being Resume, Pause, LoadMenu and QuitGame.

Firstly, the Pause function makes the cursor visible to the user and unlocks it to allow for the user to easily select their
desired option from the menu. It also changes the UI to the pause menu interface and freezes the game by setting the
timescale to zero, which essentially stops time within the gamescene.

The resume function reverses all changes made by the Pause function such as locking and hiding the cursor, resuming
time within the game and removing the pause menu UL

LoadMenu loads the Main Menu scene.

QuitGame quits the game.

17

JengaZero: Manual Gameplay PROJECT REPORT

System.Collections;
System.Collections.Generic;
UnityEngine;
: MonoBehaviour
GoneThough =
OnTriggerExit()

GoneThough =

if (GoneThough ==)

T
L

Invoke("ColliderDetect™, ©.5f);

1
J

ColliderDetect()

gameObject.GetComponent<BoxCollider>().enabled =

Start()

Update()

|
|
|
L

i
J

Figure 22: Bug fixing script

3.7 Version 1.0

Version 1.0 finalizes all components and includes minor bug fixes such as preventing the player from being able to
interact with two layers at the top of the tower.

This feature prevents the Al or player from disassembling the tower piece by piece from top to bottom while maintaining
its stability due to the decreasing height.

This is the final base game without the implementation of artificial intelligence. In terms of functionality, the player is
able to individually play and try to reach a high score, or play in turns with another player with them using the same set
of inputs. A future multiplayer option may be implemented to allow for jenga matches over the web as well.

V1.0 is a manual play mode, wherein the physics is enabled, but the moves are performed by the human player. The
game starts with the standard initial configuration, and the person playing can select a block and perform a move of
pulling out the block in the X - or Y- direction, in the coordinate system specified in Fig.[T] The game ends when a
block other than the one removed from the stack hits the ground, which is detected using a collision module.

18

JengaZero: Manual Gameplay PROJECT REPORT

< GameScene
ag

System.Collections;
System.Collections.Generic;
UnityEngine;
UnityEngine.SceneManagement;

GameManagerScript : MonoBehaviour
gameHasEnded =

GameObject PannelText;
GameObject GameOverText;

EndGame()
if (gameHasEnded ==
{
gameHasEnded = H
Debug.Log("GAME OVER");
Invoke("Restart", 5f);

PannelText.SetActive();
GameOverText.SetActive();

Restart()

SceneManager.LoadScene("GameScene");

Figure 23: GameManagerScript.cs

Figure 24: Improvements to user interface

19

JengaZero: Manual Gameplay PROJECT REPORT

System.Collections;
System.Collections.Generic;
UnityEngine;
UnityEngine.UI;

ScoreTextScript : MonoBehaviour
Text ScoreText;
ScoreSustem ScoreS;
Update()

ScoreText.text = ScoreS.Points.ToString();

Figure 25: Scrpit for updating score

< MainMenu

JENGA Al PROJECT

Figure 26: Main Menu Interface

4 JengaAlpha

In JengaAlpha, we incorporate the Q-learning, so that the machine can learn to perform the moves using the exploration
and exploitation. Here we define the states S such that the sequence of the moves are taken into account.

We explore the possibility that only the current state is relevant and not the sequence. So the number of states are
reduced to 54. To make the state invariant w.r.t. the sequence we define a new state as S’ := [sort(S;)].

We can include variations in the mass and friction in different blocks and check if the Q-learning is able to devise
schemes that learn these variations and use them in the play.

20

JengaZero: Manual Gameplay PROJECT REPORT

System.Collections;
System.Collections.Generic;
UnityEngine;
UnityEngine.SceneManagement;

: MonoBehaviour

StartGame()

SceneManager.LoadScene(SceneManager.GetActiveScene().buildIndex + 1);

EndGame()

Application.Quit();
Debug.lLog("Game Has Quit™);

Figure 27: Main Menu Script

Figure 28: Pause Menu

4.1 Q-Learning
4.1.1 States

We define the state as a 54-bit number, such that each bit represents the presence (= 1) or absence (= 1) of the block.
Hence, the total number of states is 2°4 ~ 1.8 x 10'%. Now, if b; € {0, 1} is the i" bit, with i € {1,2,...54}, then

54
=) b2 1)
=1

By definition, the states are memory-less, i.e., the states don’t have any information about the sequence in which the
blocks were removed. The presence or absence of the i*” block, we can be determined by extracting the state of b; as

b; = modulo {(2181) , 2] 2)

21

JengaZero: Manual Gameplay PROJECT REPORT

4.1.2 Action

We constrain the blocks to be removed by only sliding it along its long axis. So the action needed to be performed is
reduced to a selection of one of the 54 blocks, which is still part of the stack, i.e.,

A= {i|b =1} 3)
5 Conclusion

We have successfully implemented JengaZero that enables manual gameplay of Jenga. We have enabled mouse-based
interaction to play the game and the points system has been tested. Now, we plan to incorporate the Q-learning module
and work on JengaAlpha.

22

JengaZero: Manual Gameplay

PROJECT REPORT

em.Collectiol
System.Collections.Generic;
UnityEngin
UnityEngine.SceneManagement;

: MonoBehaviour
GameIsPaused
GameDbject pauseMenuUI;
MousePause = £
GameManagerScript GM;
Start()
Time.timeScale = 1f;
GameIsPaused = H

Update()

L

—mM—107]

if(GM.gameHasEnded ==
{

Pause();

Cursor.lockState = CursorlLockMode.locked;

MousePause = H

pauseMenuUI.SetActive(

Time.timeScale = 1f;

GameIsPaused = H
Pause()

sor.visible = H

r.lockState = CursorlLockMode.MNone;

pauseMenuUI . SetActive()R
Time.timeScale = @f;
GameIsPaused = H

LoadMenu()

SceneManager . LoadScene("Main

QuitGame()

Application
Debug . Log("

Figure 29: Pause Menu Script

if (Input.GetKeyDown({KeyCode.Escape))
I

	Introduction
	JengaZero
	Game development in Unity
	Version 0.1
	Rigidbody
	Camera

	Version 0.3
	Graphical Changes and Highlighting Blocks
	Implementing basic User Interface components
	Limitation of Selection Script

	Version 0.5
	Major Graphical Improvements
	Dragging Rigidbodies

	Version 0.7
	Game Failstate
	Point System
	Bug Fixes for Score System

	Version 0.8
	GameManager
	Score Based User Interface Improvements

	Version 0.9
	Main Menu
	Pause Menu

	Version 1.0

	JengaAlpha
	Q-Learning
	States
	Action

	Conclusion

